H M Sabbir Ahmad (Boston University), Ehsan Sabouni (Boston University), Wei Xiao (Massachusetts Institute of Technology), Christos G. Cassandras (Boston University), Wenchao Li (Boston University)

In this paper we analyze the effect of cyberattacks on cooperative control of connected and autonomous vehicles (CAVs) at traffic bottleneck points. We focus on three types of such bottleneck points including merging roadways, intersections and roundabouts. The coordination amongst CAVs in the network is achieved in a decentralized manner whereby each CAV formulates its own optimal control problem and solves it onboard in real time. A roadside unit is introduced to act as the coordinator that communicates and exchanges relevant data with the CAVs through wireless V2X communication. We show that this CAV setup is vulnerable to various cyberattacks such as Sybil attack, jamming attack and false data injection attack. Results from our simulation experiments call attention to the extent to which such attacks may jeopardize the coordination performance and the safety of the CAVs.

View More Papers

The Walls Have Ears: Gauging Security Awareness in a...

Gokul Jayakrishnan, Vijayanand Banahatti, Sachin Lodha (TCS Research Tata Consultancy Services Ltd.)

Read More

Position Paper: Space System Threat Models Must Account for...

Benjamin Cyr and Yan Long (University of Michigan), Takeshi Sugawara (The University of Electro-Communications), Kevin Fu (Northeastern University)

Read More

Secure Control of Connected and Automated Vehicles Using Trust-Aware...

H M Sabbir Ahmad, Ehsan Sabouni, Akua Dickson (Boston University), Wei Xiao (Massachusetts Institute of Technology), Christos Cassandras, Wenchao Li (Boston University)

Read More