Chong Xiang (Princeton University), Chawin Sitawarin (University of California, Berkeley), Tong Wu (Princeton University), Prateek Mittal (Princeton University)

ETAS Best Short Paper Award Runner-Up!

The physical-world adversarial patch attack poses a security threat to AI perception models in autonomous vehicles. To mitigate this threat, researchers have designed defenses with certifiable robustness. In this paper, we survey existing certifiably robust defenses and highlight core robustness techniques that are applicable to a variety of perception tasks, including classification, detection, and segmentation. We emphasize the unsolved problems in this space to guide future research, and call for attention and efforts from both academia and industry to robustify perception models in autonomous vehicles.

View More Papers

WIP: Infrared Laser Reflection Attack Against Traffic Sign Recognition...

Takami Sato (University of California, Irvine), Sri Hrushikesh Varma Bhupathiraju (University of Florida), Michael Clifford (Toyota InfoTech Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

The evolution of program analysis approaches in the era...

Alex Matrosov (CEO and Founder of Binarly Inc.)

Read More

Firefly: Spoofing Earth Observation Satellite Data through Radio Overshadowing

Edd Salkield, Sebastian Köhler, Simon Birnbach, Richard Baker (University of Oxford). Martin Strohmeier (armasuisse S+T), Ivan Martinovic (University of Oxford) Presenter: Edd Salkield

Read More