Meisam Mohammady (Iowa State University), Reza Arablouei (Data61, CSIRO)

We estimate vehicular traffic states from multi-modal data collected by single-loop detectors while preserving the privacy of the individual vehicles contributing to the data. To this end, we propose a novel hybrid differential privacy (DP) approach that utilizes minimal randomization to preserve privacy by taking advantage of the relevant traffic state dynamics and the concept of DP sensitivity. Through theoretical analysis and experiments with real-world data, we show that the proposed approach significantly outperforms the related baseline non-private and private approaches in terms of accuracy and privacy preservation.

View More Papers

REaaS: Enabling Adversarially Robust Downstream Classifiers via Robust Encoder...

Wenjie Qu (Huazhong University of Science and Technology), Jinyuan Jia (University of Illinois Urbana-Champaign), Neil Zhenqiang Gong (Duke University)

Read More

GPS Spoofing Attack Detection on Intersection Movement Assist using...

Jun Ying (Purdue University), Yiheng Feng (Purdue University), Qi Alfred Chen (University of California, Irvine), Z. Morley Mao (University of Michigan)

Read More

Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract...

Theodor Schnitzler (Research Center Trustworthy Data Science and Security, TU Dortmund, and Ruhr-Universität Bochum)

Read More