Meisam Mohammady (Iowa State University), Reza Arablouei (Data61, CSIRO)

We estimate vehicular traffic states from multi-modal data collected by single-loop detectors while preserving the privacy of the individual vehicles contributing to the data. To this end, we propose a novel hybrid differential privacy (DP) approach that utilizes minimal randomization to preserve privacy by taking advantage of the relevant traffic state dynamics and the concept of DP sensitivity. Through theoretical analysis and experiments with real-world data, we show that the proposed approach significantly outperforms the related baseline non-private and private approaches in terms of accuracy and privacy preservation.

View More Papers

WIP: Threat Modeling Laser-Induced Acoustic Interference in Computer Vision-Assisted...

Nina Shamsi (Northeastern University), Kaeshav Chandrasekar, Yan Long, Christopher Limbach (University of Michigan), Keith Rebello (Boeing), Kevin Fu (Northeastern University)

Read More

LOKI: State-Aware Fuzzing Framework for the Implementation of Blockchain...

Fuchen Ma (Tsinghua University), Yuanliang Chen (Tsinghua University), Meng Ren (Tsinghua University), Yuanhang Zhou (Tsinghua University), Yu Jiang (Tsinghua University), Ting Chen (University of Electronic Science and Technology of China), Huizhong Li (WeBank), Jiaguang Sun (School of Software, Tsinghua University)

Read More

Accountable Javascript Code Delivery

Ilkan Esiyok (CISPA Helmholtz Center for Information Security), Pascal Berrang (University of Birmingham & Nimiq), Katriel Cohn-Gordon (Meta), Robert Künnemann (CISPA Helmholtz Center for Information Security)

Read More