Dongyao Chen (Shanghai Jiao Tong University), Mert D. Pesé (Clemson University), Kang G. Shin (University of Michigan, Ann Arbor)

ZOOX Best Paper Award Winner ($500 cash prize)!

Driving apps, such as navigation, fuel-price, and road services, have been deployed and used widely. The car-related nature of these services may motivate them to infer the type of their users’ vehicles. We first apply systematic analytics on real-world apps to show that the vehicle-type — seemingly unharmful — information may have serious privacy implications. Next, we demonstrate that attackers can harvest the features of these mobile apps to infer the car-type information in a stealthy way. Specifically, we explore the use of zero-permission mobile motion sensors to extract spectral features for differentiating the engines and body types of vehicles. Based on our experimental results of 17 different cars, we have achieved 82+% and 85+% overall accuracy in identifying three major engine types and four popular body types, respectively.

View More Papers

Un-Rocking Drones: Foundations of Acoustic Injection Attacks and Recovery...

Jinseob Jeong (KAIST, Agency for Defense Development), Dongkwan Kim (Samsung SDS), Joonha Jang (KAIST), Juhwan Noh (KAIST), Changhun Song (KAIST), Yongdae Kim (KAIST)

Read More

CableAuth: A Biometric Second Factor Authentication Scheme for Electric...

Jack Sturgess, Sebastian Köhler, Simon Birnbach, Ivan Martinovic (University of Oxford)

Read More

Reminding Drivers of the Stalking Vehicles on the Road

Wei Sun, Kannan Srinivsan (The Ohio State University)

Read More

Improving In-vehicle Networks Intrusion Detection Using On-Device Transfer Learning

Sampath Rajapaksha (Robert Gordon University), Harsha Kalutarage (Robert Gordon University), M.Omar Al-Kadri (Birmingham City University), Andrei Petrovski (Robert Gordon University), Garikayi Madzudzo (Horiba Mira Ltd)

Read More