Ankit Gangwal (IIIT Hyderabad), Aakash Jain (IIIT Hyderabad) and Mauro Conti (University of Padua)

ETAS Best Short Paper Award Winner ($200 cash prize)!

Electric vehicles (EVs) represent the long-term green substitute for traditional fuel-based vehicles. To encourage EV adoption, the trust of the end-users must be assured.

In this work, we focus on a recently emerging privacy threat of profiling and identifying EVs via the analog electrical data exchanged during the EV charging process. The core focus of our work is to investigate the feasibility of such a threat at scale. To this end, we first propose an improved EV profiling approach that outperforms the state-of-the-art EV profiling techniques. Next, we exhaustively evaluate the performance of our improved approach to profile EVs in real-world settings. In our evaluations, we conduct a series of experiments including 25032 charging sessions from 530 real EVs, sub-sampled datasets with different data distributions, etc. Our results show that even with our improved approach, profiling and individually identifying the growing number of EVs appear extremely difficult in practice; at least with the analog charging data utilized throughout the literature. We believe that our findings from this work will further foster the trust of potential users in the EV ecosystem, and consequently, encourage EV adoption

View More Papers

Can You Tell Me the Time? Security Implications of...

Vik Vanderlinden, Wouter Joosen, Mathy Vanhoef (imec-DistriNet, KU Leuven)

Read More

Him of Many Faces: Characterizing Billion-scale Adversarial and Benign...

Shujiang Wu (Johns Hopkins University), Pengfei Sun (F5, Inc.), Yao Zhao (F5, Inc.), Yinzhi Cao (Johns Hopkins University)

Read More

Detecting Unknown Encrypted Malicious Traffic in Real Time via...

Chuanpu Fu (Tsinghua University), Qi Li (Tsinghua University), Ke Xu (Tsinghua University)

Read More

OBSan: An Out-Of-Bound Sanitizer to Harden DNN Executables

Yanzuo Chen (The Hong Kong University of Science and Technology), Yuanyuan Yuan (The Hong Kong University of Science and Technology), Shuai Wang (The Hong Kong University of Science and Technology)

Read More