Evan Allen (Virginia Tech), Zeb Bowden (Virginia Tech Transportation Institute), Randy Marchany (Virginia Tech), J. Scot Ransbottom (Virginia Tech)

Modern vehicles are increasingly connected systems that expose a wide variety of security risks to their users. Message authentication prevents entire classes of these attacks, such as message spoofing and electronic control unit impersonation, but current in-vehicle networks do not include message authentication features. Latency and throughput requirements for vehicle traffic can be very stringent (100 Mbps in cases), making it difficult to implement message authentication with cryptography due to the overheads required. This work investigates the feasibility of implementing cryptography-based message authentication in Automotive Ethernet networks that is fast enough to comply with these performance requirements. We find that it is infeasible to include Message Authentication Codes in all traffic without costly hardware accelerators and propose an alternate approach for future research to minimize the cost of authenticated traffic.

View More Papers

POSE: Practical Off-chain Smart Contract Execution

Tommaso Frassetto (Technical University of Darmstadt), Patrick Jauernig (Technical University of Darmstadt), David Koisser (Technical University of Darmstadt), David Kretzler (Technical University of Darmstadt), Benjamin Schlosser (Technical University of Darmstadt), Sebastian Faust (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Exploiting Diagnostic Protocol Vulnerabilities on Embedded Networks in Commercial...

Carson Green, Rik Chatterjee, Jeremy Daily (Colorado State University)

Read More

On the Feasibility of Profiling Electric Vehicles through Charging...

Ankit Gangwal (IIIT Hyderabad), Aakash Jain (IIIT Hyderabad) and Mauro Conti (University of Padua)

Read More