Muslum Ozgur Ozmen, Habiba Farrukh, Hyungsub Kim, Antonio Bianchi, Z. Berkay Celik (Purdue University)

Drone swarms are becoming increasingly prevalent in important missions, including military operations, rescue tasks, environmental monitoring, and disaster recovery. Member drones coordinate with each other to efficiently and effectively accomplish a given mission. To automatically coordinate a swarm, member drones exchange critical messages (e.g., their positions, locations of identified obstacles, and detected search targets) about their observed environment and missions over wireless communication channels. Therefore, swarms need a pairing system to establish secure communication channels that protect the confidentiality and integrity of the messages. However, swarm properties and the open physical environment in which they operate bring unique challenges in establishing cryptographic keys between drones.

In this paper, we first outline an adversarial model and the ideal design requirements for secure pairing in drone swarms. We then survey existing human-in-the-loop-based, context-based, and public key cryptography (PKC) based pairing methods to explore their feasibility in drone swarms. Our exploration, unfortunately, shows that existing techniques fail to fully meet the unique requirements of drone swarms. Thus, we propose research directions that can meet these requirements for secure, energy-efficient, and scalable swarm pairing systems.

View More Papers

REaaS: Enabling Adversarially Robust Downstream Classifiers via Robust Encoder...

Wenjie Qu (Huazhong University of Science and Technology), Jinyuan Jia (University of Illinois Urbana-Champaign), Neil Zhenqiang Gong (Duke University)

Read More

A Security Study about Electron Applications and a Programming...

Zihao Jin (Microsoft Research and Tsinghua University), Shuo Chen (Microsoft Research), Yang Chen (Microsoft Research), Haixin Duan (Tsinghua University and Quancheng Laboratory), Jianjun Chen (Tsinghua University and Zhongguancun Laboratory), Jianping Wu (Tsinghua University)

Read More

Automata-Based Automated Detection of State Machine Bugs in Protocol...

Paul Fiterau-Brostean (Uppsala University, Sweden), Bengt Jonsson (Uppsala University, Sweden), Konstantinos Sagonas (Uppsala University, Sweden and National Technical University of Athens, Greece), Fredrik Tåquist (Uppsala University, Sweden)

Read More