Andrew Roberts (Tallinn University of Technology), Mohsen Malayjerdi (Tallinn University of Technology), Mauro Bellone (Tallinn University of Technology), Olaf Maennel (The University of Adelaide), Ehsan Malayjerdi (Tallinn University of Technology)

The safety and security of navigation and planning algorithms are essential for the adoption of autonomous driving in real-world operational environments. Adversarial threats to local-planning algorithms are a developing field. Attacks have primarily been targeted at trajectory prediction algorithms which are used by the autonomous vehicle to predict the motion of ego vehicles and other environmental objects to calculate a safe planning route. This work extends the attack surface to focus on a rule-based local-planning algorithm, specifically focusing on the planning cost-based function, which is used to estimate the safest and most efficient route. Targeting this algorithm, which is used in a real-world, operational autonomous vehicle program, we devise two attacks; 1) deviation to the lateral and longitudinal pose values, and 2) time-delay of the sensed-data input messages to the local-planning nodes. Using a low-fidelity simulation testing environment, we conduct a sensitivity analysis using multiple deviation range values and time-delay duration. We find that the impact of adversarial attack cases is visible in the rate of failure to complete the mission and in the occurrence of safety violations. The cost-function is sensitive to deviations in lateral and longitudinal pose and higher duration of message delay. The result of the sensitivity analysis suggests minor deviations of the pose (lateral, longitudinal) values as an optimal range for the attackers search space. Options for mitigating such attacks are that the AV should run a concurrent process executing a concurrent planning instance for redundancy.

View More Papers

Him of Many Faces: Characterizing Billion-scale Adversarial and Benign...

Shujiang Wu (Johns Hopkins University), Pengfei Sun (F5, Inc.), Yao Zhao (F5, Inc.), Yinzhi Cao (Johns Hopkins University)

Read More

RCABench: Open Benchmarking Platform for Root Cause Analysis

Keisuke Nishimura, Yuichi Sugiyama, Yuki Koike, Masaya Motoda, Tomoya Kitagawa, Toshiki Takatera, Yuma Kurogome (Ricerca Security, Inc.)

Read More

Detection and Resolution of Control Decision Anomalies

Prof. Kang Shin (Kevin and Nancy O'Connor Professor of Computer Science, and the Founding Director of the Real-Time Computing Laboratory (RTCL) in the Electrical Engineering and Computer Science Department at the University of Michigan)

Read More