Hongchao Zhang (Washington University in St. Louis), Zhouchi Li (Worcester Polytechnic Institute), Shiyu Cheng (Washington University in St. Louis), Andrew Clark (Washington University in St. Louis)

GM AutoDriving Security Award Winner ($1,000 cash prize)!

Autonomous vehicles rely on LiDAR sensors to detect obstacles such as pedestrians, other vehicles, and fixed infrastructures. LiDAR spoofing attacks have been demonstrated that either create erroneous obstacles or prevent detection of real obstacles, resulting in unsafe driving behaviors. In this paper, we propose an approach to detect and mitigate LiDAR spoofing attacks by leveraging LiDAR scan data from other neighboring vehicles. This approach exploits the fact that spoofing attacks can typically only be mounted on one vehicle at a time, and introduce additional points into the victim’s scan that can be readily detected by comparison from other, non-modified scans. We develop a Fault Detection, Identification, and Isolation procedure that identifies non-existing obstacle, physical removal, and adversarial object attacks, while also estimating the actual locations of obstacles. We propose a control algorithm that guarantees that these estimated object locations are avoided. We validate our framework using a CARLA simulation study, in which we verify that our FDII algorithm correctly detects each attack pattern.

View More Papers

Short: Certifiably Robust Perception Against Adversarial Patch Attacks: A...

Chong Xiang (Princeton University), Chawin Sitawarin (University of California, Berkeley), Tong Wu (Princeton University), Prateek Mittal (Princeton University)

Read More

Exploiting Transport Protocol Vulnerabilities in SAE J1939 Networks

Rik Chatterjee, Subhojeet Mukherjee, Jeremy Daily (Colorado State University)

Read More

Applying Accessibility Metrics to Measure the Threat Landscape for...

John Breton, AbdelRahman Abdou (Carleton University)

Read More

Operationalizing Cybersecurity Research Ethics Review: From Principles and Guidelines...

Dennis Reidsma, Jeroen van der Ham, and Andrea Continella (University of Twente)

Read More