Kaustav Bhattacharjee, Aritra Dasgupta (New Jersey Institute of Technology)

The open data ecosystem is susceptible to vulnerabilities due to disclosure risks. Though the datasets are anonymized during release, the prevalence of the release-and-forget model makes the data defenders blind to privacy issues arising after the dataset release. One such issue can be the disclosure risks in the presence of newly released datasets which may compromise the privacy of the data subjects of the anonymous open datasets. In this paper, we first examine some of these pitfalls through the examples we observed during a red teaming exercise and then envision other possible vulnerabilities in this context. We also discuss proactive risk monitoring, including developing a collection of highly susceptible open datasets and a visual analytic workflow that empowers data defenders towards undertaking dynamic risk calibration strategies.

View More Papers

Ghost Domain Reloaded: Vulnerable Links in Domain Name Delegation...

Xiang Li (Tsinghua University), Baojun Liu (Tsinghua University), Xuesong Bai (University of California, Irvine), Mingming Zhang (Tsinghua University), Qifan Zhang (University of California, Irvine), Zhou Li (University of California, Irvine), Haixin Duan (Tsinghua University; QI-ANXIN Technology Research Institute; Zhongguancun Laboratory), Qi Li (Tsinghua University; Zhongguancun Laboratory)

Read More

Blaze: A Framework for Interprocedural Binary Analysis

Matthew Revelle, Matt Parker, Kevin Orr (Kudu Dynamics)

Read More

CHKPLUG: Checking GDPR Compliance of WordPress Plugins via Cross-language...

Faysal Hossain Shezan (University of Virginia), Zihao Su (University of Virginia), Mingqing Kang (Johns Hopkins University), Nicholas Phair (University of Virginia), Patrick William Thomas (University of Virginia), Michelangelo van Dam (in2it), Yinzhi Cao (Johns Hopkins University), Yuan Tian (UCLA)

Read More

Guess Which Car Type I Am Driving: Information Leak...

Dongyao Chen (Shanghai Jiao Tong University), Mert D. Pesé (Clemson University), Kang G. Shin (University of Michigan, Ann Arbor)

Read More