Aiping Xiong (Pennsylvania State University), Zekun Cai (Pennsylvania State University) and Tianhao Wang (University of Virginia)

Individuals’ interactions with connected autonomous vehicles (CAVs) involve sharing various data in a ubiquitous manner, raising novel challenges for privacy. The human factors of privacy must first be understood to promote consumers’ acceptance of CAVs. To inform the privacy research in the context of CAVs, we discuss how the emerging technologies development of CAV poses new privacy challenges for drivers and passengers. We argue that the privacy design of CAVs should adopt a user-centered approach, which integrates human factors into the development and deployment of privacy-enhancing technologies, such as differential privacy.

View More Papers

datAFLow: Towards a Data-Flow-Guided Fuzzer

Adrian Herrera (Australian National University), Mathias Payer (EPFL), Antony Hosking (Australian National University)

Read More

hbACSS: How to Robustly Share Many Secrets

Thomas Yurek (University of Illinois at Urbana-Champaign), Licheng Luo (University of Illinois at Urbana-Champaign), Jaiden Fairoze (University of California, Berkeley), Aniket Kate (Purdue University), Andrew Miller (University of Illinois at Urbana-Champaign)

Read More

Detecting CAN Masquerade Attacks with Signal Clustering Similarity

Pablo Moriano (Oak Ridge National Laboratory), Robert A. Bridges (Oak Ridge National Laboratory) and Michael D. Iannacone (Oak Ridge National Laboratory)

Read More

Hybrid Trust Multi-party Computation with Trusted Execution Environment

Pengfei Wu (School of Computing, National University of Singapore), Jianting Ning (College of Computer and Cyber Security, Fujian Normal University; Institute of Information Engineering, Chinese Academy of Sciences), Jiamin Shen (School of Computing, National University of Singapore), Hongbing Wang (School of Computing, National University of Singapore), Ee-Chien Chang (School of Computing, National University of Singapore)

Read More