Bo Yang (Zhejiang University), Yushi Cheng (Tsinghua University), Zizhi Jin (Zhejiang University), Xiaoyu Ji (Zhejiang University) and Wenyuan Xu (Zhejiang University)

Due to the booming of autonomous driving, in which LiDAR plays a critical role in the task of environment perception, its reliability issues have drawn much attention recently. LiDARs usually utilize deep neural models for 3D point cloud perception, which have been demonstrated to be vulnerable to imperceptible adversarial examples. However, prior work usually manipulates point clouds in the digital world without considering the physical working principle of the actual LiDAR. As a result, the generated adversarial point clouds may be realizable and effective in simulation but cannot be perceived by physical LiDARs. In this work, we introduce the physical principle of LiDARs and propose a new method for generating 3D adversarial point clouds in accord with it that can achieve two types of spoofing attacks: object hiding and object creating. We also evaluate the effectiveness of the proposed method with two 3D object detectors on the KITTI vision benchmark.

View More Papers

Fine-Grained Coverage-Based Fuzzing

Bernard Nongpoh (Université Paris Saclay), Marwan Nour (Université Paris Saclay), Michaël Marcozzi (Université Paris Saclay), Sébastien Bardin (Université Paris Saclay)

Read More

30 Years into Scientific Binary Decompilation: What We Have...

Dr. Ruoyu (Fish) Wang, Assistant Professor at Arizona State University

Read More

Above and Beyond: Organizational Efforts to Complement U.S. Digital...

Rock Stevens (University of Maryland), Faris Bugra Kokulu (Arizona State University), Adam Doupé (Arizona State University), Michelle L. Mazurek (University of Maryland)

Read More

Privacy in Urban Sensing with Instrumented Fleets, Using Air...

Ismi Abidi (IIT Delhi), Ishan Nangia (MPI-SWS), Paarijaat Aditya (Nokia Bell Labs), Rijurekha Sen (IIT Delhi)

Read More