Alireza Mohammadi (University of Michigan-Dearborn) and Hafiz Malik (University of Michigan-Dearborn)

Motivated by ample evidence in the automotive cybersecurity literature that the car brake ECUs can be maliciously reprogrammed, it has been shown that an adversary who can directly control the frictional brake actuators can induce wheel lockup conditions despite having a limited knowledge of the tire-road interaction characteristics. In this paper, we investigate the destabilizing effect of such wheel lockup attacks on the lateral motion stability of vehicles from a robust stability perspective. Furthermore, we propose a quadratic programming (QP) problem that the adversary can solve for finding the optimal destabilizing longitudinal slip reference values.

View More Papers

Titanium: A Metadata-Hiding File-Sharing System with Malicious Security

Weikeng Chen (DZK/UC Berkeley), Thang Hoang (Virginia Tech), Jorge Guajardo (Robert Bosch Research and Technology Center), Attila A. Yavuz (University of South Florida)

Read More

Problematic Content in Online Ads

Franzisca Roesner (University of Washington)

Read More

LogicMEM: Automatic Profile Generation for Binary-Only Memory Forensics via...

Zhenxiao Qi (UC Riverside), Yu Qu (UC Riverside), Heng Yin (UC Riverside)

Read More