Edwin Yang (University of Oklahoma) and Song Fang (University of Oklahoma)

With the advent of the in-vehicle infotainment (IVI) systems (e.g., Android Automotive) and other portable devices (e.g., smartphones) that may be brought into a vehicle, it becomes crucial to establish a secure channel between the vehicle and an in-vehicle device or between two in-vehicle devices. Traditional pairing schemes are tedious, as they require user interaction (e.g., manually typing in a passcode or bringing the two devices close to each other). Modern vehicles, together with smartphones and many emerging Internet-of-things (IoT) devices (e.g., dashcam) are often equipped with built-in Global Positioning System (GPS) receivers. In this paper, we propose a GPS-based Key establishment technique, called GPSKey, by leveraging the inherent randomness of vehicle movement. Specifically, vehicle movement changes with road ground conditions, traffic situations, and pedal operations. It thus may have rich randomness. Meanwhile, two in-vehicle GPS receivers can observe the same vehicle movement and exploit it for key establishment without requiring user interaction. We implement a prototype of GPSKey on top of off-the-shelf devices. Experimental results show that legitimate devices in the same vehicle require 1.18-minute of driving on average to establish a 128-bit key. Meanwhile, the attacker who follows or leads the victim’s vehicle is unable to infer the key.

View More Papers

Demo #11: Understanding the Effects of Paint Colors on...

Shaik Sabiha (University at Buffalo), Keyan Guo (University at Buffalo), Foad Hajiaghajani (University at Buffalo), Chunming Qiao (University at Buffalo), Hongxin Hu (University at Buffalo) and Ziming Zhao (University at Buffalo)

Read More

DeepSight: Mitigating Backdoor Attacks in Federated Learning Through Deep...

Phillip Rieger (Technical University of Darmstadt), Thien Duc Nguyen (Technical University of Darmstadt), Markus Miettinen (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

CFInsight: A Comprehensive Metric for CFI Policies

Tommaso Frassetto (Technical University of Darmstadt), Patrick Jauernig (Technical University of Darmstadt), David Koisser (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

insecure:// Vulnerability Analysis of URI Scheme Handling in Android...

Abdulla Aldoseri (University of Birmingham) and David Oswald (University of Birmingham)

Read More