Yulong Cao (University of Michigan), Yanan Guo (University of Pittsburgh), Takami Sato (UC Irvine), Qi Alfred Chen (UC Irvine), Z. Morley Mao (University of Michigan) and Yueqiang Cheng (NIO)

Advanced driver-assistance systems (ADAS) are widely used by modern vehicle manufacturers to automate, adapt and enhance vehicle technology for safety and better driving. In this work, we design a practical attack against automated lane centering (ALC), a crucial functionality of ADAS, with remote adversarial patches. We identify that the back of a vehicle is an effective attack vector and improve the attack robustness by considering various input frames. The demo includes videos that show our attack can divert victim vehicle out of lane on a representative ADAS, Openpilot, in a simulator.

View More Papers

Trusted Verification of Over-the-Air (OTA) Secure Software Updates on...

Anway Mukherjee, Ryan Gerdes, and Tam Chantem (Virginia Tech)

Read More

Fighting Fake News in Encrypted Messaging with the Fuzzy...

Linsheng Liu (George Washington University), Daniel S. Roche (United States Naval Academy), Austin Theriault (George Washington University), Arkady Yerukhimovich (George Washington University)

Read More

Demo #4: Attacking Tesla Model X’s Autopilot Using Compromised...

Ben Nassi (Ben-Gurion University of the Negev), Yisroel Mirsky (Ben-Gurion University of the Negev, Georgia Tech), Dudi Nassi, Raz Ben Netanel (Ben-Gurion University of the Negev), Oleg Drokin (Independent Researcher), and Yuval Elovici (Ben-Gurion University of the Negev) Best Demo Award Winner ($300 cash prize)!

Read More

Vehicle Lateral Motion Stability Under Wheel Lockup Attacks

Alireza Mohammadi (University of Michigan-Dearborn) and Hafiz Malik (University of Michigan-Dearborn)

Read More