Yulong Cao (University of Michigan), Yanan Guo (University of Pittsburgh), Takami Sato (UC Irvine), Qi Alfred Chen (UC Irvine), Z. Morley Mao (University of Michigan) and Yueqiang Cheng (NIO)

Advanced driver-assistance systems (ADAS) are widely used by modern vehicle manufacturers to automate, adapt and enhance vehicle technology for safety and better driving. In this work, we design a practical attack against automated lane centering (ALC), a crucial functionality of ADAS, with remote adversarial patches. We identify that the back of a vehicle is an effective attack vector and improve the attack robustness by considering various input frames. The demo includes videos that show our attack can divert victim vehicle out of lane on a representative ADAS, Openpilot, in a simulator.

View More Papers

Demo #8: Identifying Drones Based on Visual Tokens

Ben Nassi (Ben-Gurion University of the Negev), Elad Feldman (Ben-Gurion University of the Negev), Aviel Levy (Ben-Gurion University of the Negev), Yaron Pirutin (Ben-Gurion University of the Negev), Asaf Shabtai (Ben-Gurion University of the Negev), Ryusuke Masuoka (Fujitsu System Integration Laboratories) and Yuval Elovici (Ben-Gurion University of the Negev)

Read More

GPSKey: GPS based Secret Key Establishment for Intra-Vehicle Environment

Edwin Yang (University of Oklahoma) and Song Fang (University of Oklahoma)

Read More

RamBoAttack: A Robust and Query Efficient Deep Neural Network...

Viet Quoc Vo (The University of Adelaide), Ehsan Abbasnejad (The University of Adelaide), Damith C. Ranasinghe (University of Adelaide)

Read More

(Short) WIP: End-to-End Analysis of Adversarial Attacks to Automated...

Hengyi Liang, Ruochen Jiao (Northwestern University), Takami Sato, Junjie Shen, Qi Alfred Chen (UC Irvine), and Qi Zhu (Northwestern University) Best Short Paper Award Winner!

Read More