Yulong Cao (University of Michigan), Yanan Guo (University of Pittsburgh), Takami Sato (UC Irvine), Qi Alfred Chen (UC Irvine), Z. Morley Mao (University of Michigan) and Yueqiang Cheng (NIO)

Advanced driver-assistance systems (ADAS) are widely used by modern vehicle manufacturers to automate, adapt and enhance vehicle technology for safety and better driving. In this work, we design a practical attack against automated lane centering (ALC), a crucial functionality of ADAS, with remote adversarial patches. We identify that the back of a vehicle is an effective attack vector and improve the attack robustness by considering various input frames. The demo includes videos that show our attack can divert victim vehicle out of lane on a representative ADAS, Openpilot, in a simulator.

View More Papers

Chosen-Instruction Attack Against Commercial Code Virtualization Obfuscators

Shijia Li (College of Computer Science, NanKai University and the Tianjin Key Laboratory of Network and Data Security Technology), Chunfu Jia (College of Computer Science, NanKai University and the Tianjin Key Laboratory of Network and Data Security Technology), Pengda Qiu (College of Computer Science, NanKai University and the Tianjin Key Laboratory of Network and Data…

Read More

CANCloak: Deceiving Two ECUs with One Frame

Li Yue, Zheming Li, Tingting Yin, and Chao Zhang (Tsinghua University)

Read More

MUVIDS: False MAVLink Injection Attack Detection in Communication for...

Seonghoon Jeong, Eunji Park, Kang Uk Seo, Jeong Do Yoo, and Huy Kang Kim (Korea University)

Read More

EqualNet: A Secure and Practical Defense for Long-term Network...

Jinwoo Kim (KAIST), Eduard Marin (Telefonica Research (Spain)), Mauro Conti (University of Padua), Seungwon Shin (KAIST)

Read More