Yi Zhu (State University of New York at Buffalo), Chenglin Miao (University of Georgia), Foad Hajiaghajani (State University of New York at Buffalo), Mengdi Huai (University of Virginia), Lu Su (Purdue University) and Chunming Qiao (State University of New York at Buffalo)

As a fundamental task in autonomous driving, LiDAR semantic segmentation aims to provide semantic understanding of the driving environment. We demonstrate that existing LiDAR semantic segmentation models in autonomous driving systems can be easily fooled by placing some simple objects on the road, such as cardboard and traffic signs. We show that this type of attack can hide a vehicle and change the road surface to road-side vegetation.

View More Papers

SoK: A Proposal for Incorporating Gamified Cybersecurity Awareness in...

June De La Cruz (INSPIRIT Lab, University of Denver), Sanchari Das (INSPIRIT Lab, University of Denver)

Read More

PASS: A System-Driven Evaluation Platform for Autonomous Driving Safety...

Zhisheng Hu (Baidu Security), Junjie Shen (UC Irvine), Shengjian Guo (Baidu Security), Xinyang Zhang (Baidu Security), Zhenyu Zhong (Baidu Security), Qi Alfred Chen (UC Irvine) and Kang Li (Baidu Security)

Read More

30 Years into Scientific Binary Decompilation: What We Have...

Dr. Ruoyu (Fish) Wang, Assistant Professor at Arizona State University

Read More

Demo #4: Attacking Tesla Model X’s Autopilot Using Compromised...

Ben Nassi (Ben-Gurion University of the Negev), Yisroel Mirsky (Ben-Gurion University of the Negev, Georgia Tech), Dudi Nassi, Raz Ben Netanel (Ben-Gurion University of the Negev), Oleg Drokin (Independent Researcher), and Yuval Elovici (Ben-Gurion University of the Negev) Best Demo Award Winner ($300 cash prize)!

Read More