Pritam Dash (University of British Columbia) and Karthik Pattabiraman (University of British Columbia)

Robotic Vehicles (RV) rely extensively on sensor inputs to operate autonomously. Physical attacks such as sensor tampering and spoofing feed erroneous sensor measurements to deviate RVs from their course and result in mission failures. We present PID-Piper , a novel framework for automatically recovering RVs from physical attacks. We use machine learning (ML) to design an attack resilient FeedForward Controller (FFC), which runs in tandem with the RV’s primary controller and monitors it. Under attacks, the FFC takes over from the RV’s primary controller to recover the RV, and allows the RV to complete its mission successfully. Our evaluation on 6 RV systems including 3 real RVs shows that PID-Piper allows RVs to complete their missions successfully despite attacks in 83% of the cases.

View More Papers

ScriptChecker: To Tame Third-party Script Execution With Task Capabilities

Wu Luo (Peking University), Xuhua Ding (Singapore Management University), Pengfei Wu (School of Computing, National University of Singapore), Xiaolei Zhang (Peking University), Qingni Shen (Peking University), Zhonghai Wu (Peking University)

Read More

Property Inference Attacks Against GANs

Junhao Zhou (Xi'an Jiaotong University), Yufei Chen (Xi'an Jiaotong University), Chao Shen (Xi'an Jiaotong University), Yang Zhang (CISPA Helmholtz Center for Information Security)

Read More

Generating Test Suites for GPU Instruction Sets through Mutation...

Shoham Shitrit(University of Rochester) and Sreepathi Pai (University of Rochester)

Read More

P4DDPI: Securing P4-Programmable Data Plane Networks via DNS Deep...

Ali AlSabeh (University of South Carolina), Elie Kfoury (University of South Carolina), Jorge Crichigno (University of South Carolina) and Elias Bou-Harb (University of Texas at San Antonio)

Read More