Barak Davidovich (Ben-Gurion University of the Negev), Ben Nassi (Ben-Gurion University of the Negev) and Yuval Elovici (Ben-Gurion University of the Negev)

In this study, we propose an innovative method for the real-time detection of GPS spoofing attacks targeting drones, based on the video stream captured by a drone’s camera. The proposed method collects frames from the video stream and their location (GPS); by calculating the correlation between each frame, our method can detect a GPS spoofing on a drone. We first analyze the performance of the suggested method in a controlled environment by conducting experiments on a flight simulator that we developed. Then, we analyze its performance in the real world using a DJI drone. Our method can provide different levels of security against GPS spoofing attacks, depending on the detection interval required; for example, it can provide a high level of security to a drone flying at an altitude of 50-100 meters over an urban area at an average speed of 4 km/h in conditions of low ambient light; in this scenario, the proposed method can provide a level of security that detects any GPS spoofing attack in which the spoofed location is a distance of 1-4 meters (an average of 2.5 meters) from the real location.

View More Papers

Explainable AI in Cybersecurity Operations: Lessons Learned from xAI...

Megan Nyre-Yu (Sandia National Laboratories), Elizabeth S. Morris (Sandia National Laboratories), Blake Moss (Sandia National Laboratories), Charles Smutz (Sandia National Laboratories), Michael R. Smith (Sandia National Laboratories)

Read More

FitM: Binary-Only Coverage-GuidedFuzzing for Stateful Network Protocols

Dominik Maier, Otto Bittner, Marc Munier, Julian Beier (TU Berlin)

Read More

Reflections on Artifact Evaluation

Dr. Eric Eide (University of Utah)

Read More