Zhisheng Hu (Baidu Security), Junjie Shen (UC Irvine), Shengjian Guo (Baidu Security), Xinyang Zhang (Baidu Security), Zhenyu Zhong (Baidu Security), Qi Alfred Chen (UC Irvine) and Kang Li (Baidu Security)

Safety and security play critical roles for the success of Autonomous Driving (AD) systems. Since AD systems heavily rely on AI components, the safety and security research of such components has also received great attention in recent years. While it is widely recognized that AI component-level (mis)behavior does not necessarily lead to AD system-level impacts, most of existing work still only adopts component-level evaluation. To fill such critical scientific methodology-level gap from component-level to real system-level impact, a system-driven evaluation platform jointly constructed by the community could be the solution. In this paper, we present PASS (Platform for Auto-driving Safety and Security), a system-driven evaluation prototype based on simulation. By sharing our platform building concept and preliminary efforts, we hope to call on the community to build a uniform and extensible platform to make AI safety and security work sufficiently meaningful at the system level.

View More Papers

Low-risk Privacy-preserving Electric Vehicle Charging with Payments

Andreas Unterweger, Fabian Knirsch, Clemens Brunner and Dominik Engel (Center for Secure Energy Informatics, Salzburg University of Applied Sciences, Puch bei Hallein, Austria)

Read More

RamBoAttack: A Robust and Query Efficient Deep Neural Network...

Viet Quoc Vo (The University of Adelaide), Ehsan Abbasnejad (The University of Adelaide), Damith C. Ranasinghe (University of Adelaide)

Read More

Demo #6: Impact of Stealthy Attacks on Autonomous Robotic...

Pritam Dash, Mehdi Karimibiuki, and Karthik Pattabiraman (University of British Columbia)

Read More

Demo #5: Securing Heavy Vehicle Diagnostics

Jeremy Daily, David Nnaji, and Ben Ettlinger (Colorado State University)

Read More