Paul Agbaje (University of Texas at Arlington), Afia Anjum (University of Texas at Arlington), Arkajyoti Mitra (University of Texas at Arlington), Gedare Bloom (University of Colorado Colorado Springs) and Habeeb Olufowobi (University of Texas at Arlington)

The landscape of automotive vehicle attack surfaces continues to grow, and vulnerabilities in the controller area network (CAN) expose vehicles to cyber-physical risks and attacks that can endanger the safety of passengers and pedestrians. Intrusion detection systems (IDS) for CAN have emerged as a key mitigation approach for these risks, but uniform methods to compare proposed IDS techniques are lacking. In this paper, we present a framework for comparative performance analysis of state-of-the-art IDSs for CAN bus to provide a consistent methodology to evaluate and assess proposed approaches. This framework relies on previously published datasets comprising message logs recorded from a real vehicle CAN bus coupled with traditional classifier performance metrics to reduce the discrepancies that arise when comparing IDS approaches from disparate sources.

View More Papers

RamBoAttack: A Robust and Query Efficient Deep Neural Network...

Viet Quoc Vo (The University of Adelaide), Ehsan Abbasnejad (The University of Adelaide), Damith C. Ranasinghe (University of Adelaide)

Read More

Demo #10: Security of Deep Learning based Automated Lane...

Takami Sato, Junjie Shen, Ningfei Wang (UC Irvine), Yunhan Jia (ByteDance), Xue Lin (Northeastern University), and Qi Alfred Chen (UC Irvine)

Read More

Demo #14: In-Vehicle Communication Using Named Data Networking

Zachariah Threet (Tennessee Tech), Christos Papadopoulos (University of Memphis), Proyash Poddar (Florida International University), Alex Afanasyev (Florida International University), William Lambert (Tennessee Tech), Haley Burnell (Tennessee Tech), Sheikh Ghafoor (Tennessee Tech) and Susmit Shannigrahi (Tennessee Tech)

Read More