Abdullah Zubair Mohammed (Virginia Tech), Yanmao Man (University of Arizona), Ryan Gerdes (Virginia Tech), Ming Li (University of Arizona) and Z. Berkay Celik (Purdue University)

The Controller Area Network (CAN) bus standard is the most common in-vehicle network that provides communication between Electronic Control Units (ECUs). CAN messages lack authentication and data integrity protection mechanisms and hence are vulnerable to attacks, such as impersonation and data injection, at the digital level. The physical layer of the bus allows for a one-way change of a given bit to accommodate prioritization; viz. a recessive bit (1) may be changed to a dominant one (0). In this paper, we propose a physical-layer data manipulation attack wherein multiple compromised ECUs collude to cause 0→1 (i.e., dominant to recessive) bit-flips, allowing for arbitrary bit-flips in transmitted messages. The attack is carried out by inducing transient voltages in the CAN bus that are heightened due to the parasitic reactance of the bus and non-ideal properties of the line drivers. Simulation results indicate that, with more than eight compromised ECUs, an attacker can induce a sufficient voltage drop to cause dominant bits to be flipped to recessive ones.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 49 [1] => 55 ) ) ) [post__not_in] => Array ( [0] => 8690 ) )

(Short) Fooling Perception via Location: A Case of Region-of-Interest...

Kanglan Tang, Junjie Shen, and Qi Alfred Chen (UC Irvine)

Read More

Probe the Proto: Measuring Client-Side Prototype Pollution Vulnerabilities of...

Zifeng Kang (Johns Hopkins University), Song Li (Johns Hopkins University), Yinzhi Cao (Johns Hopkins University)

Read More

Demo #2: Sequential Attacks on Kalman Filter-Based Forward Collision...

Yuzhe Ma, Jon Sharp, Ruizhe Wang, Earlence Fernandes, and Jerry Zhu (University of Wisconsin–Madison)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)