Zhisheng Hu (Baidu), Shengjian Guo (Baidu) and Kang Li (Baidu)

In this demo, we disclose a potential bug in the Tesla Full Self-Driving (FSD) software. A vulnerable FSD vehicle can be deterministically tricked to run a red light. Attackers can cause a victim vehicle to behave in such ways without tampering or interfering with any sensors or physically accessing the vehicle. We infer that such behavior is caused by Tesla FSD’s decision system failing to take latest perception signals once it enters a specific mode. We call such problematic behavior Pringles Syndrome. Our study on multiple other autonomous driving implementations shows that this failed state update is a common failure pattern that specially needs attentions in autonomous driving software tests and developments.

View More Papers

NC-Max: Breaking the Security-Performance Tradeoff in Nakamoto Consensus

Ren Zhang (Nervos), Dingwei Zhang (Nervos), Quake Wang (Nervos), Shichen Wu (School of Cyber Science and Technology, Shandong University), Jan Xie (Nervos), Bart Preneel (imec-COSIC, KU Leuven)

Read More

Chhoyhopper: A Moving Target Defense with IPv6

A S M Rizvi (University of Southern California/Information Sciences Institute) and John Heidemann (University of Southern California/Information Sciences Institute)

Read More

MIRROR: Model Inversion for Deep LearningNetwork with High Fidelity

Shengwei An (Purdue University), Guanhong Tao (Purdue University), Qiuling Xu (Purdue University), Yingqi Liu (Purdue University), Guangyu Shen (Purdue University); Yuan Yao (Nanjing University), Jingwei Xu (Nanjing University), Xiangyu Zhang (Purdue University)

Read More

MIRROR: Model Inversion for Deep Learning Network with High...

Shengwei An (Purdue University), Guanhong Tao (Purdue University), Qiuling Xu (Purdue University), Yingqi Liu (Purdue University), Guangyu Shen (Purdue University), Yuan Yao (Nanjing University), Jingwei Xu (Nanjing University), Xiangyu Zhang (Purdue University)

Read More