Michael Pucher (University of Vienna), Christian Kudera (SBA Research), Georg Merzdovnik (SBA Research)

The complexity and functionality of malware is ever-increasing. Obfuscation is used to hide the malicious intent from virus scanners and increase the time it takes to reverse engineer the binary. One way to minimize this effort is function clone detection. Detecting whether a function is already known, or similar to an existing function, can reduce analysis effort. Outside of malware, the same function clone detection mechanism can be used to find vulnerable versions of functions in binaries, making it a powerful technique.

This work introduces a slim approach for the identification of obfuscated function clones, called OFCI, building on recent advances in machine learning based function clone detection. To tackle the issue of obfuscation, OFCI analyzes the effect of known function calls on function similarity. Furthermore, we investigate function similarity classification on code obfuscated through virtualization by applying function clone detection on execution traces. While not working adequately, it nevertheless provides insight into potential future directions.

Using the ALBERT transformer OFCI can achieve an 83% model size reduction in comparison to state-of-the-art approaches, while only causing an average 7% decrease in the ROC-AUC scores of function pair similarity classification. However, the reduction in model size comes at the cost of precision for function clone search. We discuss the reasons for this as well as other pitfalls of building function similarity detection tooling.

View More Papers

Phishing awareness and education – When to best remind?

Benjamin Maximilian Berens (SECUSO, Karlsruhe Institute of Technology), Katerina Dimitrova, Mattia Mossano (SECUSO, Karlsruhe Institute of Technology), Melanie Volkamer (SECUSO, Karlsruhe Institute of Technology)

Read More

First, Fuzz the Mutants

Alex Groce (Northern Arizona Univerisity), Goutamkumar Kalburgi (Northern Arizona Univerisity), Claire Le Goues (Carnegie Mellon University), Kush Jain (Carnegie Mellon University), Rahul Gopinath (Saarland University)

Read More

NC-Max: Breaking the Security-Performance Tradeoff in Nakamoto Consensus

Ren Zhang (Nervos), Dingwei Zhang (Nervos), Quake Wang (Nervos), Shichen Wu (School of Cyber Science and Technology, Shandong University), Jan Xie (Nervos), Bart Preneel (imec-COSIC, KU Leuven)

Read More

A Cross-Architecture Instruction Embedding Model for Natural Language Processing-Inspired...

Kimberly Redmond (University of South Carolina), Lannan Luo (University of South Carolina), Qiang Zeng (University of South Carolina)

Read More