William Findlay (Carleton University) and AbdelRahman Abdou (Carleton University)

While security researchers are adept at discovering vulnerabilities and measuring their impact, disclosing vulnerabilities to affected stakeholders has traditionally been difficult. Beyond public notices such as CVEs, there have traditionally been few appropriate channels through which to directly communicate the nature and scope of a vulnerability to those directly impacted by it. Security.txt is a relatively new proposed standard that hopes to change this by defining a canonical file format and URI through which organizations can provide contact information for vulnerability disclosure. However, despite its favourable characteristics, limited studies have systematically analyzed how effective Security.txt might be for a widespread vulnerability notification campaign. In this paper, we present a large-scale study of Security.txt’s adoption over the top 1M popular domains according to the Tranco list. We measure specific features of Security.txt files such as contact information, preferred language, and RFC version compliance. We then analyze these results to better understand how suitable the current Security.txt standard is for facilitating a large-scale vulnerability notification campaign, and make recommendations for improving future version of the standard.

View More Papers

Applying Accessibility Metrics to Measure the Threat Landscape for...

John Breton, AbdelRahman Abdou (Carleton University)

Read More

Hybrid Trust Multi-party Computation with Trusted Execution Environment

Pengfei Wu (School of Computing, National University of Singapore), Jianting Ning (College of Computer and Cyber Security, Fujian Normal University; Institute of Information Engineering, Chinese Academy of Sciences), Jiamin Shen (School of Computing, National University of Singapore), Hongbing Wang (School of Computing, National University of Singapore), Ee-Chien Chang (School of Computing, National University of Singapore)

Read More

Interpretable Federated Transformer Log Learning for Cloud Threat Forensics

Gonzalo De La Torre Parra (University of the Incarnate Word, TX, USA), Luis Selvera (Secure AI and Autonomy Lab, The University of Texas at San Antonio, TX, USA), Joseph Khoury (The Cyber Center For Security and Analytics, University of Texas at San Antonio, TX, USA), Hector Irizarry (Raytheon, USA), Elias Bou-Harb (The Cyber Center For…

Read More

Dissecting American Fuzzy Lop – A FuzzBench Evaluation

Andrea Fioraldi (EURECOM), Alessandro Mantovani (EURECOM), Dominik Maier (TU Berlin), Davide Balzarotti (EURECOM)

Read More