Ali AlSabeh (University of South Carolina), Elie Kfoury (University of South Carolina), Jorge Crichigno (University of South Carolina) and Elias Bou-Harb (University of Texas at San Antonio)

One of the main roles of the Domain Name System (DNS) is to map domain names to IP addresses. Despite the importance of this function, DNS traffic often passes without being analyzed, thus making the DNS a center of attacks that keep evolving and growing. Software-based mitigation approaches and dedicated state-of-the-art firewalls can become a bottleneck and are subject to saturation attacks, especially in high-speed networks. The emerging P4-programmable data plane can implement a variety of network security mitigation approaches at high-speed rates without disrupting legitimate traffic.

This paper describes a system that relies on programmable switches and their stateful processing capabilities to parse and analyze DNS traffic solely in the data plane, and subsequently apply security policies on domains according to the network administrator. In particular, Deep Packet Inspection (DPI) is leveraged to extract the domain name consisting of any number of labels and hence, apply filtering rules ( e.g., b locking malicious domains). Evaluation results show that the proposed approach can parse more domain labels than any state-of-the-art P4-based approach. Additionally, a significant performance gain is attained when comparing it to a traditional software firewall -pfsense-, in terms of throughput, delay, and packet loss. The resources occupied by the implemented P4 program are minimal, which allows for more security functionalities to be added.

Index Terms—P4-programmable switches, stateful processing, high-speed networks, DNS filtering, DPI.

View More Papers

The Truth Shall Set Thee Free: Enabling Practical Forensic...

Leonardo Babun (Florida International University), Amit Kumar Sikder (Florida International University), Abbas Acar (Florida International University), Selcuk Uluagac (Florida International University)

Read More

An In-Depth Analysis on Adoption of Attack Mitigations in...

Ruotong Yu (Stevens Institute of Technology, University of Utah), Yuchen Zhang, Shan Huang (Stevens Institute of Technology)

Read More

Fuzzing Configurations of Program Options

Zenong Zhang (University of Texas at Dallas), George Klees (University of Maryland), Eric Wang (Poolesville High School), Michael Hicks (University of Maryland), Shiyi Wei (University of Texas at Dallas)

Read More

Work-in-Progress: Uncovering Dark Patterns: A Longitudinal Study of Cookie...

Zihan Qu (Johns Hopkins University), Xinyi Qu (University College London), Xin Shen, Zhen Liang, and Jianjia Yu (Johns Hopkins University)

Read More