Alan Cao (New York University) and Brendan Dolan-Gavitt (New York University)

On GitHub, open-source developers use the fork feature to create server-side clones and implement code changes separately before creating pull requests. However, such fork repositories can be abused to store and distribute malware, particularly malware that stealthily mines cryptocurrencies.

In this paper, we present an analysis of this emerging attack vector and a system for catching malware in GitHub fork repositories with minimal human effort called Fork Integrity Analysis, implemented through a detection infrastructure called Fork Sentry. By automatically detecting and reverse engineering interesting artifacts extracted from a given repository’s forks, we can generate alerts for suspicious artifacts, and provide a means for takedown by GitHub Trust & Safety. We demonstrate the efficacy of our techniques by scanning 68,879 forks of 35 popular cryptocurrency repositories, leading to the discovery of 26 forked repositories that were hosting malware, and report them to GitHub with seven successful takedowns so far. Our detection infrastructure allows not only for the triaging and alerting of suspicious forks, but also provides continuous monitoring for later potential malicious forks. The code and collected data from Fork Sentry will be released as an open-source project.

View More Papers

MobFuzz: Adaptive Multi-objective Optimization in Gray-box Fuzzing

Gen Zhang (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Tai Yue (National University of Defense Technology), Xiangdong Kong (National University of Defense Technology), Shan Huang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Read More

hbACSS: How to Robustly Share Many Secrets

Thomas Yurek (University of Illinois at Urbana-Champaign), Licheng Luo (University of Illinois at Urbana-Champaign), Jaiden Fairoze (University of California, Berkeley), Aniket Kate (Purdue University), Andrew Miller (University of Illinois at Urbana-Champaign)

Read More

FitM: Binary-Only Coverage-GuidedFuzzing for Stateful Network Protocols

Dominik Maier, Otto Bittner, Marc Munier, Julian Beier (TU Berlin)

Read More

Euler: Detecting Network Lateral Movement via Scalable Temporal Graph...

Isaiah J. King (The George Washington University), H. Howie Huang (The George Washington University)

Read More