Shoham Shitrit(University of Rochester) and Sreepathi Pai (University of Rochester)

Formal semantics for instruction sets can be used to validate implementations through formal verification. However, testing is often the only feasible method when checking an artifact such as a hardware processor, a simulator, or a compiler. In this work, we construct a pipeline that can be used to automatically generate a test suite for an instruction set from its executable semantics. Our method mutates the formal semantics, expressed as a C program, to introduce bugs in the semantics. Using a bounded model checker, we then check the mutated semantics to the original for equivalence. Since the mutated and original semantics are usually not equivalent, this yields counterexamples which can be used to construct a test suite. By combining a mutation testing engine with a bounded model checker, we obtain a fully automatic method for constructing test suites for a given formal semantics. We intend to instantiate this on a formal semantics of a portion of NVIDIA’s PTX instruction set for GPUs that we have developed. We will compare to our existing method of testing that uses stratified random sampling and evaluate effectiveness, cost, and feasibility.

View More Papers

Demo #1: Security of Multi-Sensor Fusion based Perception in...

Yulong Cao (University of Michigan), Ningfei Wang (UC, Irvine), Chaowei Xiao (Arizona State University), Dawei Yang (University of Michigan), Jin Fang (Baidu Research), Ruigang Yang (University of Michigan), Qi Alfred Chen (UC, Irvine), Mingyan Liu (University of Michigan) and Bo Li (University of Illinois at Urbana-Champaign)

Read More

SynthCT: Towards Portable Constant-Time Code

Sushant Dinesh (University of Illinois at Urbana Champaign), Grant Garrett-Grossman (University of Illinois at Urbana Champaign), Christopher W. Fletcher (University of Illinois at Urbana Champaign)

Read More

What Storage? An Empirical Analysis of Web Storage in...

Zubair Ahmad (Università Ca’ Foscari Venezia), Samuele Casarin (Università Ca’ Foscari Venezia), and Stefano Calzavara (Università Ca’ Foscari Venezia)

Read More

DRIVETRUTH: Automated Autonomous Driving Dataset Generation for Security Applications

Raymond Muller (Purdue University), Yanmao Man (University of Arizona), Z. Berkay Celik (Purdue University), Ming Li (University of Arizona) and Ryan Gerdes (Virginia Tech)

Read More