Andrea Fioraldi (EURECOM), Alessandro Mantovani (EURECOM), Dominik Maier (TU Berlin), Davide Balzarotti (EURECOM)

AFL is one of the most used and extended fuzzing projects, adopted by industry and academic researchers alike. While the community agrees on AFL’s effectiveness at discovering new vulnerabilities and at its outstanding usability, many of its internal design choices remain untested to date. Security practitioners often clone the project “as-is” and use it as a starting point to develop new techniques, usually taking everything under the hood for granted. Instead, we believe that a careful analysis of the different parameters could help modern fuzzers to improve their performance and explain how each choice can affect the outcome of security testing, either negatively or positively.

The goal of this paper is to provide a comprehensive understanding of the internal mechanisms of AFL by performing experiments and comparing different metrics used to evaluate fuzzers. This will prove the efficacy of some patterns and clarify which aspects are instead outdated. To achieve this, we set up nine unique experiments that we carried out on the popular Fuzzbench platform. Each test focuses on a different aspect of AFL, ranging from its mutation approach to the feedback encoding scheme and the scheduling methodologies.

Our preliminary findings show that each design choice affects different factors of AFL. While some of these are positively correlated with the number of detected bugs or the target coverage, other features are related to usability and reliability. Most important, the outcome of our experiments will indicate which parts of AFL we should preserve in modern fuzzers.

View More Papers

Tetrad: Actively Secure 4PC for Secure Training and Inference

Nishat Koti (IISc Bangalore), Arpita Patra (IISc Bangalore), Rahul Rachuri (Aarhus University, Denmark), Ajith Suresh (IISc, Bangalore)

Read More

Demo #1: Security of Multi-Sensor Fusion based Perception in...

Yulong Cao (University of Michigan), Ningfei Wang (UC, Irvine), Chaowei Xiao (Arizona State University), Dawei Yang (University of Michigan), Jin Fang (Baidu Research), Ruigang Yang (University of Michigan), Qi Alfred Chen (UC, Irvine), Mingyan Liu (University of Michigan) and Bo Li (University of Illinois at Urbana-Champaign)

Read More

Demo #5: Disclosing the Pringles Syndrome in Tesla FSD...

Zhisheng Hu (Baidu), Shengjian Guo (Baidu) and Kang Li (Baidu)

Read More

Demo #11: Understanding the Effects of Paint Colors on...

Shaik Sabiha (University at Buffalo), Keyan Guo (University at Buffalo), Foad Hajiaghajani (University at Buffalo), Chunming Qiao (University at Buffalo), Hongxin Hu (University at Buffalo) and Ziming Zhao (University at Buffalo)

Read More