Linsheng Liu (George Washington University), Daniel S. Roche (United States Naval Academy), Austin Theriault (George Washington University), Arkady Yerukhimovich (George Washington University)

Recent years have seen a strong uptick in both the prevalence and real-world consequences of false information spread through online platforms. At the same time, encrypted messaging systems such as WhatsApp, Signal, and Telegram, are rapidly gaining popularity as users seek increased privacy in their digital lives.

The challenge we address is how to combat the viral spread of misinformation without compromising privacy. Our FACTS system tracks user complaints on messages obliviously, only revealing the message's contents and originator once sufficiently many complaints have been lodged.

Our system is *private*, meaning it does not reveal anything about the senders or contents of messages which have received few or no complaints; *secure*, meaning there is no way for a malicious user to evade the system or gain an outsized impact over the complaint system; and *scalable*, as we demonstrate excellent practical efficiency for up to millions of complaints per day.

Our main technical contribution is a new collaborative counting Bloom filter, a simple construction with difficult probabilistic analysis, which may have independent interest as a privacy-preserving randomized count sketch data structure. Compared to prior work on message flagging and tracing in end-to-end encrypted messaging, our novel contribution is the addition of a high threshold of multiple complaints that are needed before a message is audited or flagged.

We present and carefully analyze the probabilistic performance of our data structure, provide a precise security definition and proof, and then measure the accuracy and scalability of our scheme via experimentation.

View More Papers

Demo: A Simulator for Cooperative and Automated Driving Security

Mohammed Lamine Bouchouia (Telecom Paris - Institut Polytechnique de Paris), Jean-Philippe Monteuuis (Qualcomm), Houda Labiod (Telecom Paris - Institut Polytechnique de Paris), Ons Jelassi, Wafa Ben Jaballah (Thales) and Jonathan Petit (Telecom Paris - Institut Polytechnique de Paris)

Read More

Shaduf: Non-Cycle Payment Channel Rebalancing

Zhonghui Ge (Shanghai Jiao Tong University), Yi Zhang (Shanghai Jiao Tong University), Yu Long (Shanghai Jiao Tong University), Dawu Gu (Shanghai Jiao Tong University)

Read More

Demo #1: Security of Multi-Sensor Fusion based Perception in...

Yulong Cao (University of Michigan), Ningfei Wang (UC, Irvine), Chaowei Xiao (Arizona State University), Dawei Yang (University of Michigan), Jin Fang (Baidu Research), Ruigang Yang (University of Michigan), Qi Alfred Chen (UC, Irvine), Mingyan Liu (University of Michigan) and Bo Li (University of Illinois at Urbana-Champaign)

Read More

Detecting CAN Masquerade Attacks with Signal Clustering Similarity

Pablo Moriano (Oak Ridge National Laboratory), Robert A. Bridges (Oak Ridge National Laboratory) and Michael D. Iannacone (Oak Ridge National Laboratory)

Read More