Samuel Mergendahl (MIT Lincoln Laboratory), Nathan Burow (MIT Lincoln Laboratory), Hamed Okhravi (MIT Lincoln Laboratory)

Memory corruption attacks against unsafe programming languages like C/C++ have been a major threat to computer systems for multiple decades. Various sanitizers and runtime exploit mitigation techniques have been shown to only provide partial protection at best. Recently developed ‘safe’ programming languages such as Rust and Go hold the promise to change this paradigm by preventing memory corruption bugs using a strong type system and proper compile-time and runtime checks. Gradual deployment of these languages has been touted as a way of improving the security of existing applications before entire applications can be developed in safe languages. This is notable in popular applications such as Firefox and Tor. In this paper, we systematically analyze the security of multi-language applications. We show that because language safety checks in safe languages and exploit mitigation techniques applied to unsafe languages (e.g., Control-Flow Integrity) break different stages of an exploit to prevent control hijacking attacks, an attacker can carefully maneuver between the languages to mount a successful attack. In essence, we illustrate that the incompatible set of assumptions made in various languages enables attacks that are not possible in each language alone. We study different variants of these attacks and analyze Firefox to illustrate the feasibility and extent of this problem. Our findings show that gradual deployment of safe programming languages, if not done with extreme care, can indeed be detrimental to security.

View More Papers

insecure:// Vulnerability Analysis of URI Scheme Handling in Android...

Abdulla Aldoseri (University of Birmingham) and David Oswald (University of Birmingham)

Read More

30 Years into Scientific Binary Decompilation: What We Have...

Dr. Ruoyu (Fish) Wang, Assistant Professor at Arizona State University

Read More

GhostTalk: Interactive Attack on Smartphone Voice System Through Power...

Yuanda Wang (Michigan State University), Hanqing Guo (Michigan State University), Qiben Yan (Michigan State University)

Read More

Explainable AI in Cybersecurity Operations: Lessons Learned from xAI...

Megan Nyre-Yu (Sandia National Laboratories), Elizabeth S. Morris (Sandia National Laboratories), Blake Moss (Sandia National Laboratories), Charles Smutz (Sandia National Laboratories), Michael R. Smith (Sandia National Laboratories)

Read More