Alejandro Mera (Northeastern University), Yi Hui Chen (Northeastern University), Ruimin Sun (Northeastern University), Engin Kirda (Northeastern University), Long Lu (Northeastern University)

Embedded and Internet-of-Things (IoT) devices have seen an increase in adoption in many domains. The security of these devices is of great importance as they are often used to control critical infrastructure, medical devices, and vehicles. Existing solutions to isolate microcontroller (MCU) resources in order to increase their security face significant challenges such as specific hardware unavailability, Memory Protection Unit (MPU) limitations and a significant lack of Direct Memory Access (DMA) support. Nevertheless, DMA is fundamental for the power and performance requirements of embedded applications.

In this paper, we present D-Box, a systematic approach to enable secure DMA operations for compartmentalization solutions of embedded applications using real-time operating systems (RTOS). D Box defines a reference architecture and a workflow to protect DMA operations holistically. It provides practical methods to harden the kernel and define capability-based security policies for easy definition of DMA operations with strong security properties. We implemented a D-Box prototype for the Cortex M3/M4 on top of the popular FreeRTOS-MPU (F-MPU). The D-Box procedures and a stricter security model enabled DMA operations, yet it exposed 41 times less ROP (return-orienting-programming) gadgets when compared with the standard F-MPU. D-Box adds only a 2% processor overhead while reducing the power consumption of peripheral operation benchmarks by 18.2%. The security properties and performance of D Box were tested and confirmed on a real-world case study of a Programmable Logic Controller (PLC) application.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 55 ) ) ) [post__not_in] => Array ( [0] => 8550 ) )

Towards a TEE-based V2V Protocol for Connected and Autonomous...

Mohit Kumar Jangid (Ohio State University) and Zhiqiang Lin (Ohio State University)

Read More

An In-depth Analysis of Duplicated Linux Kernel Bug Reports

Dongliang Mu (Huazhong University of Science and Technology), Yuhang Wu (Pennsylvania State University), Yueqi Chen (Pennsylvania State University), Zhenpeng Lin (Pennsylvania State University), Chensheng Yu (George Washington University), Xinyu Xing (Pennsylvania State University), Gang Wang (University of Illinois at Urbana-Champaign)

Read More

Demo #11: Understanding the Effects of Paint Colors on...

Shaik Sabiha (University at Buffalo), Keyan Guo (University at Buffalo), Foad Hajiaghajani (University at Buffalo), Chunming Qiao (University at Buffalo), Hongxin Hu (University at Buffalo) and Ziming Zhao (University at Buffalo)

Read More

Phishing awareness and education – When to best remind?

Benjamin Maximilian Berens (SECUSO, Karlsruhe Institute of Technology), Katerina Dimitrova, Mattia Mossano (SECUSO, Karlsruhe Institute of Technology), Melanie Volkamer (SECUSO, Karlsruhe Institute of Technology)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)