Alejandro Mera (Northeastern University), Yi Hui Chen (Northeastern University), Ruimin Sun (Northeastern University), Engin Kirda (Northeastern University), Long Lu (Northeastern University)

Embedded and Internet-of-Things (IoT) devices have seen an increase in adoption in many domains. The security of these devices is of great importance as they are often used to control critical infrastructure, medical devices, and vehicles. Existing solutions to isolate microcontroller (MCU) resources in order to increase their security face significant challenges such as specific hardware unavailability, Memory Protection Unit (MPU) limitations and a significant lack of Direct Memory Access (DMA) support. Nevertheless, DMA is fundamental for the power and performance requirements of embedded applications.

In this paper, we present D-Box, a systematic approach to enable secure DMA operations for compartmentalization solutions of embedded applications using real-time operating systems (RTOS). D Box defines a reference architecture and a workflow to protect DMA operations holistically. It provides practical methods to harden the kernel and define capability-based security policies for easy definition of DMA operations with strong security properties. We implemented a D-Box prototype for the Cortex M3/M4 on top of the popular FreeRTOS-MPU (F-MPU). The D-Box procedures and a stricter security model enabled DMA operations, yet it exposed 41 times less ROP (return-orienting-programming) gadgets when compared with the standard F-MPU. D-Box adds only a 2% processor overhead while reducing the power consumption of peripheral operation benchmarks by 18.2%. The security properties and performance of D Box were tested and confirmed on a real-world case study of a Programmable Logic Controller (PLC) application.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 55 ) ) ) [post__not_in] => Array ( [0] => 8550 ) )

Shaduf: Non-Cycle Payment Channel Rebalancing

Zhonghui Ge (Shanghai Jiao Tong University), Yi Zhang (Shanghai Jiao Tong University), Yu Long (Shanghai Jiao Tong University), Dawu Gu (Shanghai Jiao Tong University)

Read More

Packet-Level Open-World App Fingerprinting on Wireless Traffic

Jianfeng Li (The Hong Kong Polytechnic University), Shuohan Wu (The Hong Kong Polytechnic University), Hao Zhou (The Hong Kong Polytechnic University), Xiapu Luo (The Hong Kong Polytechnic University), Ting Wang (Penn State), Yangyang Liu (The Hong Kong Polytechnic University), Xiaobo Ma (Xi'an Jiaotong University)

Read More

Hybrid Trust Multi-party Computation with Trusted Execution Environment

Pengfei Wu (School of Computing, National University of Singapore), Jianting Ning (College of Computer and Cyber Security, Fujian Normal University; Institute of Information Engineering, Chinese Academy of Sciences), Jiamin Shen (School of Computing, National University of Singapore), Hongbing Wang (School of Computing, National University of Singapore), Ee-Chien Chang (School of Computing, National University of Singapore)

Read More

HARPO: Learning to Subvert Online Behavioral Advertising

Jiang Zhang (University of Southern California), Konstantinos Psounis (University of Southern California), Muhammad Haroon (University of California, Davis), Zubair Shafiq (University of California, Davis)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)