Ren Zhang (Nervos), Dingwei Zhang (Nervos), Quake Wang (Nervos), Shichen Wu (School of Cyber Science and Technology, Shandong University), Jan Xie (Nervos), Bart Preneel (imec-COSIC, KU Leuven)

First implemented in Bitcoin, Nakamoto Consensus (NC) is the most influential consensus protocol in cryptocurrencies despite all the alternative protocols designed afterward. Nevertheless, NC is trapped by a security-performance tradeoff. While existing efforts mostly attempt to break this tradeoff via abandoning or adjusting NC's backbone protocol, we alternatively forward the relevance of the network layer. We identify and experimentally prove that the crux resides with the prolonged block propagation latency caused by not-yet-propagated transactions. We thus present a two-step mechanism to confirm only fully-propagated transactions, and therefore remove the limits upon NC's performance imposed by its security demands, realizing NC's untapped potential. Implementing this two-step mechanism, we propose NC-Max, whose (1) security is analyzed, proving that it provides stronger resistance than NC against transaction withholding attacks, and (2) performance is evaluated, showing that it exhausts the full throughput supported by the network, and shortens the transaction confirmation latency by 3.0 to 6.6 times compared to NC without compromising security. NC-Max is implemented in Nervos CKB, a public permissionless blockchain.

View More Papers

Demo #4: Recovering Autonomous Robotic Vehicles from Physical Attacks

Pritam Dash (University of British Columbia) and Karthik Pattabiraman (University of British Columbia)

Read More

Too Afraid to Drive: Systematic Discovery of Semantic DoS...

Ziwen Wan (University of California, Irvine), Junjie Shen (University of California, Irvine), Jalen Chuang (University of California, Irvine), Xin Xia (The University of California, Los Angeles), Joshua Garcia (University of California, Irvine), Jiaqi Ma (The University of California, Los Angeles), Qi Alfred Chen (University of California, Irvine)

Read More

PoF: Proof-of-Following for Vehicle Platoons

Ziqi Xu (University of Arizona), Jingcheng Li (University of Arizona), Yanjun Pan (University of Arizona), Loukas Lazos (University of Arizona, Tucson), Ming Li (University of Arizona, Tucson), Nirnimesh Ghose (University of Nebraska–Lincoln)

Read More

Progressive Scrutiny: Incremental Detection of UBI bugs in the...

Yizhuo Zhai (University of California, Riverside), Yu Hao (University of California, Riverside), Zheng Zhang (University of California, Riverside), Weiteng Chen (University of California, Riverside), Guoren Li (University of California, Riverside), Zhiyun Qian (University of California, Riverside), Chengyu Song (University of California, Riverside), Manu Sridharan (University of California, Riverside), Srikanth V. Krishnamurthy (University of California, Riverside),…

Read More