Huibo Wang (Baidu Security), Guoxing Chen (Shanghai Jiao Tong University), Yinqian Zhang (Southern University of Science and Technology), Zhiqiang Lin (Ohio State University)

Proof-of-Elapsed-Time (POET) is a blockchain consensus protocol in which each participating node is required to wait for the passage of a specified time duration before it can participate in the block leader election in each round. It relies on trusted execution environments, such as Intel SGX, to ensure its security, and has been implemented in Hyperledger Sawtooth and used in many real-world settings. This paper examines the security issues including fairness guarantees of the Sawtooth’s POET design and implementation, and discovers a new category of security attacks against POET, dubbed Multi-Certificate Attacks, which allows a malicious node to unfairly create multiple Certificates in each round of block leader election and select the one that maximizes her probability of winning. We have systematically analyzed the root causes of these attacks and assisted the Sawtooth community to fix several vulnerabilities in the latest version of POET. To further mitigate the identified threats, we propose a new design of POET in this paper, which we call POETA, that can be used to address the remaining vulnerabilities we have discovered. We have implemented POETA and evaluated its security and performance.

View More Papers

EqualNet: A Secure and Practical Defense for Long-term Network...

Jinwoo Kim (KAIST), Eduard Marin (Telefonica Research (Spain)), Mauro Conti (University of Padua), Seungwon Shin (KAIST)

Read More

Fighting Fake News in Encrypted Messaging with the Fuzzy...

Linsheng Liu (George Washington University), Daniel S. Roche (United States Naval Academy), Austin Theriault (George Washington University), Arkady Yerukhimovich (George Washington University)

Read More

On Utility and Privacy in Synthetic Genomic Data

Bristena Oprisanu (UCL), Georgi Ganev (UCL & Hazy), Emiliano De Cristofaro (UCL)

Read More

Demo: A Simulator for Cooperative and Automated Driving Security

Mohammed Lamine Bouchouia (Telecom Paris - Institut Polytechnique de Paris), Jean-Philippe Monteuuis (Qualcomm), Houda Labiod (Telecom Paris - Institut Polytechnique de Paris), Ons Jelassi, Wafa Ben Jaballah (Thales) and Jonathan Petit (Telecom Paris - Institut Polytechnique de Paris)

Read More