Dongliang Mu (Huazhong University of Science and Technology), Yuhang Wu (Pennsylvania State University), Yueqi Chen (Pennsylvania State University), Zhenpeng Lin (Pennsylvania State University), Chensheng Yu (George Washington University), Xinyu Xing (Pennsylvania State University), Gang Wang (University of Illinois at Urbana-Champaign)

In the past three years, the continuous fuzzing projects Syzkaller and Syzbot have achieved great success in detecting kernel vulnerabilities, finding more kernel bugs than those found in the past 20 years. However, a side effect of continuous fuzzing is that it generates an excessive number of
crash reports, many of which are “duplicated” reports caused by the same bug. While Syzbot uses a simple heuristic to group (deduplicate) reports, we find that it is often inaccurate. In this
paper, we empirically analyze the duplicated kernel bug reports to understand: (1) the prevalence of duplication; (2) the potential costs introduced by duplication; and (3) the key causes behind the duplication problem. We collected all of the fixed kernel bugs from September 2017 to November 2020, including 3.24 million crash reports grouped by Syzbot under 2,526 bug reports (identified by unique bug titles). We found the bug reports indeed had duplication: 47.1% of the 2,526 bug reports are duplicated with one or more other reports. By analyzing the metadata of these reports, we found undetected duplication introduced extra costs in terms of time and developer efforts. Then we organized Linux kernel experts to analyze a sample of duplicated bugs (375 bug reports, unique 120 bugs) and identified 6 key contributing factors to the duplication. Based on these empirical findings, we proposed and prototyped actionable strategies for bug deduplication. After confirming their effectiveness using a ground-truth dataset, we further applied our methods and identified previously unknown duplication cases among open bugs.

View More Papers

DrawnApart: A Deep-Learning Enhanced GPU Fingerprinting Technique

Naif Mehanna (University of Lille, CNRS, Inria), Tomer Laor (Ben-Gurion University of the Negev)

Read More

Uncovering Cross-Context Inconsistent Access Control Enforcement in Android

Hao Zhou (The Hong Kong Polytechnic University), Haoyu Wang (Beijing University of Posts and Telecommunications), Xiapu Luo (The Hong Kong Polytechnic University), Ting Chen (University of Electronic Science and Technology of China), Yajin Zhou (Zhejiang University), Ting Wang (Pennsylvania State University)

Read More

Chunked-Cache: On-Demand and Scalable Cache Isolation for Security Architectures

Ghada Dessouky (Technical University of Darmstadt), Emmanuel Stapf (Technical University of Darmstadt), Pouya Mahmoody (Technical University of Darmstadt), Alexander Gruler (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Titanium: A Metadata-Hiding File-Sharing System with Malicious Security

Weikeng Chen (DZK/UC Berkeley), Thang Hoang (Virginia Tech), Jorge Guajardo (Robert Bosch Research and Technology Center), Attila A. Yavuz (University of South Florida)

Read More