Ahmed Salem (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security)

Machine learning (ML) has established itself as a cornerstone for various critical applications ranging from autonomous driving to authentication systems. However, with this increasing adoption rate of machine learning models, multiple attacks have emerged. One class of such attacks is training time attack, whereby an adversary executes their attack before or during the machine learning model training. In this work, we propose a new training time attack against computer vision based machine learning models, namely model hijacking attack. The adversary aims to hijack a target model to execute a different task than its original one without the model owner noticing. Model hijacking can cause accountability and security risks since a hijacked model owner can be framed for having their model offering illegal or unethical services. Model hijacking attacks are launched in the same way as existing data poisoning attacks. However, one requirement of the model hijacking attack is to be stealthy, i.e., the data samples used to hijack the target model should look similar to the model's original training dataset. To this end, we propose two different model hijacking attacks, namely Chameleon and Adverse Chameleon, based on a novel encoder-decoder style ML model, namely the Camouflager. Our evaluation shows that both of our model hijacking attacks achieve a high attack success rate, with a negligible drop in model utility.

View More Papers

Let’s Authenticate: Automated Certificates for User Authentication

James Conners (Brigham Young University), Corey Devenport (Brigham Young University), Stephen Derbidge (Brigham Young University), Natalie Farnsworth (Brigham Young University), Kyler Gates (Brigham Young University), Stephen Lambert (Brigham Young University), Christopher McClain (Brigham Young University), Parker Nichols (Brigham Young University), Daniel Zappala (Brigham Young University)

Read More

Hybrid Trust Multi-party Computation with Trusted Execution Environment

Pengfei Wu (School of Computing, National University of Singapore), Jianting Ning (College of Computer and Cyber Security, Fujian Normal University; Institute of Information Engineering, Chinese Academy of Sciences), Jiamin Shen (School of Computing, National University of Singapore), Hongbing Wang (School of Computing, National University of Singapore), Ee-Chien Chang (School of Computing, National University of Singapore)

Read More

Semantic-Informed Driver Fuzzing Without Both the Hardware Devices and...

Wenjia Zhao (Xi'an Jiaotong University and University of Minnesota), Kangjie Lu (University of Minnesota), Qiushi Wu (University of Minnesota), Yong Qi (Xi'an Jiaotong University)

Read More

CFInsight: A Comprehensive Metric for CFI Policies

Tommaso Frassetto (Technical University of Darmstadt), Patrick Jauernig (Technical University of Darmstadt), David Koisser (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More