Xueluan Gong (Wuhan University), Yanjiao Chen (Zhejiang University), Jianshuo Dong (Wuhan University), Qian Wang (Wuhan University)

Deep neural networks have achieved remarkable success on a variety of mission-critical tasks. However, recent studies show that deep neural networks are vulnerable to backdoor attacks, where the attacker releases backdoored models that behave normally on benign samples but misclassify any trigger-imposed samples to a target label. Unlike adversarial examples, backdoor attacks manipulate both the inputs and the model, perturbing samples with the trigger and injecting backdoors into the model. In this paper, we propose a novel attention-based evasive backdoor attack, dubbed ATTEQ-NN. Different from existing works that arbitrarily set the trigger mask, we carefully design an attention-based trigger mask determination framework, which places the trigger at the crucial region with the most significant influence on the prediction results. To make the trigger-imposed samples appear more natural and imperceptible to human inspectors, we introduce a Quality-of-Experience (QoE) term into the loss function of trigger generation and carefully adjust the transparency of the trigger. During the process of iteratively optimizing the trigger generation and the backdoor injection components, we propose an alternating retraining strategy, which is shown to be effective in improving the clean data accuracy and evading some model-based defense approaches.

We evaluate ATTEQ-NN with extensive experiments on VGG- Flower, CIFAR-10, GTSRB, and CIFAR-100 datasets. The results show that ATTEQ-NN can increase the attack success rate by as high as 82% over baselines when the poison ratio is low while achieving a high QoE of the backdoored samples. We demonstrate that ATTEQ-NN reaches an attack success rate of more than 41.7% in the physical world under different lighting conditions and shooting angles. ATTEQ-NN preserves an attack success rate of more than 92.5% even if the original backdoored model is fine-tuned with clean data. Our user studies show that the backdoored samples generated by ATTEQ-NN are indiscernible under visual inspections. ATTEQ-NN is shown to be evasive to state-of-the-art defense methods, including model pruning, NAD, STRIP, NC, and MNTD.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 55 ) ) ) [post__not_in] => Array ( [0] => 8530 ) )

Detecting Obfuscated Function Clones in Binaries using Machine Learning

Michael Pucher (University of Vienna), Christian Kudera (SBA Research), Georg Merzdovnik (SBA Research)

Read More

MIRROR: Model Inversion for Deep Learning Network with High...

Shengwei An (Purdue University), Guanhong Tao (Purdue University), Qiuling Xu (Purdue University), Yingqi Liu (Purdue University), Guangyu Shen (Purdue University), Yuan Yao (Nanjing University), Jingwei Xu (Nanjing University), Xiangyu Zhang (Purdue University)

Read More

WIP: Interrupt Attack on TEE-protected Robotic Vehicles

Mulong Luo (Cornell University) and G. Edward Suh (Cornell University)

Read More

Remote Memory-Deduplication Attacks

Martin Schwarzl (Graz University of Technology), Erik Kraft (Graz University of Technology), Moritz Lipp (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)