Ismi Abidi (IIT Delhi), Ishan Nangia (MPI-SWS), Paarijaat Aditya (Nokia Bell Labs), Rijurekha Sen (IIT Delhi)

Companies providing services like cab sharing, e-commerce logistics and, food delivery are willing to instrument their vehicles for scaling up measurements of traffic congestion, travel time, road surface quality, air quality, etc.~cite{polmeasure}. Analyzing fine-grained sensors data from such large fleets can be highly beneficial; however, this sensor information reveals the locations and the number of vehicles in the deployed fleet. This sensitive data is of high business value to rival companies in the same business domain, e.g., Uber vs. Ola, Uber vs. Lyft in cab sharing, or Amazon vs. Alibaba in the e-commerce domain. This paper provides privacy guarantees for the scenario mentioned above using Gaussian Process Regression (GPR) based interpolation, Differential Privacy (DP), and Secure two-party computations (2PC). The sensed values from instrumented vehicle fleets are made available preserving fleet and client privacy, along with client utility. Our system has efficient latency and bandwidth overheads, even for resource-constrained mobile clients. To demonstrate our end-to-end system, we build a sample Android application that gives the least polluted route alternatives given a source-destination pair in a privacy preserved manner.

View More Papers

Interpretable Federated Transformer Log Learning for Cloud Threat Forensics

Gonzalo De La Torre Parra (University of the Incarnate Word, TX, USA), Luis Selvera (Secure AI and Autonomy Lab, The University of Texas at San Antonio, TX, USA), Joseph Khoury (The Cyber Center For Security and Analytics, University of Texas at San Antonio, TX, USA), Hector Irizarry (Raytheon, USA), Elias Bou-Harb (The Cyber Center For…

Read More

F-PKI: Enabling Innovation and Trust Flexibility in the HTTPS...

Laurent Chuat (ETH Zurich), Cyrill Krähenbühl (ETH Zürich), Prateek Mittal (Princeton University), Adrian Perrig (ETH Zurich)

Read More

HeadStart: Efficiently Verifiable and Low-Latency Participatory Randomness Generation at...

Hsun Lee (National Taiwan University), Yuming Hsu (National Taiwan University), Jing-Jie Wang (National Taiwan University), Hao Cheng Yang (National Taiwan University), Yu-Heng Chen (National Taiwan University), Yih-Chun Hu (University of Illinois at Urbana-Champaign), Hsu-Chun Hsiao (National Taiwan University)

Read More

Effects of Knowledge and Experience on Privacy Decision-Making in...

Zekun Cai (Penn State University), Aiping Xiong (Penn State University)

Read More