Hossein Fereidooni (Technical University of Darmstadt), Alexandra Dmitrienko (University of Wuerzburg), Phillip Rieger (Technical University of Darmstadt), Markus Miettinen (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt), Felix Madlener (KOBIL)

In the present era of ubiquitous digitization more and more services are becoming available online which is amplified by the Corona pandemic. The fast-growing mobile service market opens up new attack surfaces to the mobile service ecosystem. Hence, mobile service providers are faced with various challenges to protect their services and in particular the associated mobile apps. Defenses for apps are, however, often limited to (lightweight) application-level protection such as app hardening and monitoring and intrusion detection. Therefore, effective risk management is crucial to limit the exposure of mobile services to threats and potential damages caused by attacks.

In this paper, we present FedCRI, a solution for sharing Cyber-Risk Intelligence (CRI). At its core, FedCRI transforms mobile cyber-risks into machine learning (ML) models and leverages ML-based risk management to evaluate security risks on mobile devices. FedCRI enables fast and autonomous sharing of actionable ML-based CRI knowledge by utilizing Federated Learning (FL). FL allows collaborative training of effective risk detection models based on information contributed by different mobile service providers while preserving the privacy of the training data of the individual organizations. We extensively evaluate our approach on several real-world user databases representing 23.8 million users of security-critical mobile apps (since Android 4 and iOS 6) provided by nine different service providers in different European countries. The datasets were collected over the course of six years in the domains of financial services, payments, or insurances. Our approach can successfully extract accurate CRI models, allowing the effective identification of cybersecurity risks on mobile devices. Our evaluation shows that the federated risk detection model can achieve better than 99% accuracy in terms of F1-score in most risk classification tasks with a very low number of false positives.

View More Papers

Generating Test Suites for GPU Instruction Sets through Mutation...

Shoham Shitrit(University of Rochester) and Sreepathi Pai (University of Rochester)

Read More

hbACSS: How to Robustly Share Many Secrets

Thomas Yurek (University of Illinois at Urbana-Champaign), Licheng Luo (University of Illinois at Urbana-Champaign), Jaiden Fairoze (University of California, Berkeley), Aniket Kate (Purdue University), Andrew Miller (University of Illinois at Urbana-Champaign)

Read More

EMS: History-Driven Mutation for Coverage-based Fuzzing

Chenyang Lyu (Zhejiang University), Shouling Ji (Zhejiang University), Xuhong Zhang (Zhejiang University & Zhejiang University NGICS Platform), Hong Liang (Zhejiang University), Binbin Zhao (Georgia Institute of Technology), Kangjie Lu (University of Minnesota), Raheem Beyah (Georgia Institute of Technology)

Read More

ATTEQ-NN: Attention-based QoE-aware Evasive Backdoor Attacks

Xueluan Gong (Wuhan University), Yanjiao Chen (Zhejiang University), Jianshuo Dong (Wuhan University), Qian Wang (Wuhan University)

Read More