Yijun Yang (The Chinese University of Hong Kong), Ruiyuan Gao (The Chinese University of Hong Kong), Yu Li (The Chinese University of Hong Kong), Qiuxia Lai (Communication University of China), Qiang Xu (The Chinese University of Hong Kong)

Adversarial examples (AEs) pose severe threats to the applications of deep neural networks (DNNs) to safety-critical domains (e.g., autonomous driving and healthcare analytics). While there has been a vast body of research to defend against AEs, to the best of our knowledge, they all suffer from some weaknesses, e.g., defending against only a subset of AEs or causing a relatively high accuracy loss for legitimate inputs. Moreover, most of the existing solutions cannot defend against adaptive attacks, wherein attackers are knowledgeable about the defense mechanisms and craft AEs accordingly.

In this paper, we propose a novel AE detection framework based on the very nature of AEs, i.e., their semantic information is inconsistent with the discriminative features extracted by the target DNN model. To be specific, the proposed solution, namely ContraNet, models such contradiction by first taking both the input and the inference result to a generator to obtain a synthetic output and then comparing it against the original input. For legitimate inputs that are correctly inferred, the synthetic output tries to reconstruct the input. On the contrary, for AEs, instead of reconstructing the input, the synthetic output would be created to conform to the wrong label whenever possible. Consequently, by measuring the distance between the input and the synthetic output with metric learning, we can differentiate AEs from legitimate inputs. We perform comprehensive evaluations under various types of AE attack scenarios, and experimental results show that ContraNet outperforms existing solutions by a large margin, especially for adaptive attacks. Moreover, further analysis shows that successful AEs that can bypass ContraNet tend to have much-weakened adversarial semantics. We have also shown that ContraNet can be easily combined with adversarial training techniques to achieve more outstanding AE defense capabilities.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 55 ) ) ) [post__not_in] => Array ( [0] => 8518 ) )

Building Embedded Systems Like It’s 1996

Ruotong Yu (Stevens Institute of Technology, University of Utah), Francesca Del Nin (University of Padua), Yuchen Zhang (Stevens Institute of Technology), Shan Huang (Stevens Institute of Technology), Pallavi Kaliyar (Norwegian University of Science and Technology), Sarah Zakto (Cyber Independent Testing Lab), Mauro Conti (University of Padua, Delft University of Technology), Georgios Portokalidis (Stevens Institute of…

Read More

Demo #6: Attacks on CAN Error Handling Mechanism

Khaled Serag (Purdue University), Vireshwar Kumar (IIT Delhi), Z. Berkay Celik (Purdue University), Rohit Bhatia (Purdue University), Mathias Payer (EPFL) and Dongyan Xu (Purdue University)

Read More

Hiding My Real Self! Protecting Intellectual Property in Additive...

Sizhuang Liang (Georgia Institute of Technology), Saman Zonouz (Rutgers University), Raheem Beyah (Georgia Institute of Technology)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)