Ghada Dessouky (Technical University of Darmstadt), Emmanuel Stapf (Technical University of Darmstadt), Pouya Mahmoody (Technical University of Darmstadt), Alexander Gruler (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Shared cache resources in multi-core processors are vulnerable to cache side-channel attacks. Recently proposed defenses such as randomized mapping of addresses to cache lines or well-known cache partitioning have their own caveats: Randomization-based defenses have been shown vulnerable to newer attack algorithms besides relying on weak cryptographic primitives. They do not fundamentally address the root cause for cache side-channel attacks, namely, mutually distrusting codes sharing cache resources. Cache partitioning defenses provide the strict resource partitioning required to effectively block all side-channel threats. However, they usually rely on way-based partitioning which is not fine-grained and cannot scale to support a larger number of protection domains, e.g., in trusted execution environment (TEE) security architectures, besides degrading performance and often resulting in cache underutilization.

To overcome the shortcomings of both approaches, we present a novel and flexible set-associative cache partitioning design for TEE architectures, called Chunked-Cache. The core idea of Chunked-Cache is to enable an execution context to “carve” out an exclusive configurable chunk of the cache if the execution requires side-channel resilience. If side-channel resilience is not required, mainstream cache resources can be freely utilized. Hence, our proposed cache design addresses the security performance trade-off practically by enabling efficient selective and on-demand utilization of side-channel-resilient caches, while providing well-grounded future-proof security guarantees. We show that Chunked-Cache provides side-channel-resilient cache utilization for sensitive code execution, with small hardware overhead, while incurring no performance overhead on the OS. We also show that it outperforms conventional way-based cache partitioning by 43%, while scaling significantly better to support a larger number of protection domains.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 55 ) ) ) [post__not_in] => Array ( [0] => 8517 ) )

Hybrid Trust Multi-party Computation with Trusted Execution Environment

Pengfei Wu (School of Computing, National University of Singapore), Jianting Ning (College of Computer and Cyber Security, Fujian Normal University; Institute of Information Engineering, Chinese Academy of Sciences), Jiamin Shen (School of Computing, National University of Singapore), Hongbing Wang (School of Computing, National University of Singapore), Ee-Chien Chang (School of Computing, National University of Singapore)

Read More

V-Range: Enabling Secure Ranging in 5G Wireless Networks

Mridula Singh (CISPA - Helmholtz Center for Information Security), Marc Roeschlin (ETH Zurich), Aanjhan Ranganathan (Northeastern University), Srdjan Capkun (ETH Zurich)

Read More

Repttack: Exploiting Cloud Schedulers to Guide Co-Location Attacks

Chongzhou Fang (University of California, Davis), Han Wang (University of California, Davis), Najmeh Nazari (University of California, Davis), Behnam Omidi (George Mason University), Avesta Sasan (University of California, Davis), Khaled N. Khasawneh (George Mason University), Setareh Rafatirad (University of California, Davis), Houman Homayoun (University of California, Davis)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)