Jianfeng Li (The Hong Kong Polytechnic University), Shuohan Wu (The Hong Kong Polytechnic University), Hao Zhou (The Hong Kong Polytechnic University), Xiapu Luo (The Hong Kong Polytechnic University), Ting Wang (Penn State), Yangyang Liu (The Hong Kong Polytechnic University), Xiaobo Ma (Xi'an Jiaotong University)

Mobile apps have profoundly reshaped modern lifestyles in different aspects. Several concerns are naturally raised about the privacy risk of mobile apps. Despite the prevalence of encrypted communication, app fingerprinting (AF) attacks still pose a serious threat to users’ online privacy. However, existing AF attacks are usually hampered by four challenging issues, namely i) hidden destination, ii) invisible boundary, iii) app multiplexing, and iv) open-world recognition, when they are applied to wireless traffic. None of existing AF attacks can address all these challenges. In this paper, we advance a novel AF attack, dubbed PACKETPRINT, to recognize user activities associated with the app of interest from encrypted wireless traffic and tackle the above challenges by proposing two novel models, i.e., sequential XGBoost and hierarchical bag-of- words model. We conduct extensive experiments to evaluate the proposed attack in a series of challenging scenarios, including i) open-world setting, ii) packet loss and network congestion, iii) simultaneous use of different apps, and iv) cross-dataset recognition. The experimental results show that PACKETPRINT can accurately recognize user activities associated with the apps of interest. It achieves the average F1-score 0.884 for open-world app recognition and the average F1-score 0.959 for in-app user action recognition.

View More Papers

D-Box: DMA-enabled Compartmentalization for Embedded Applications

Alejandro Mera (Northeastern University), Yi Hui Chen (Northeastern University), Ruimin Sun (Northeastern University), Engin Kirda (Northeastern University), Long Lu (Northeastern University)

Read More

SemperFi: Anti-spoofing GPS Receiver for UAVs

Harshad Sathaye (Northeastern University), Gerald LaMountain (Northeastern University), Pau Closas (Northeastern University), Aanjhan Ranganathan (Northeastern University)

Read More

ProvTalk: Towards Interpretable Multi-level Provenance Analysis in Networking Functions...

Azadeh Tabiban (CIISE, Concordia University, Montreal, QC, Canada), Heyang Zhao (CIISE, Concordia University, Montreal, QC, Canada), Yosr Jarraya (Ericsson Security Research, Ericsson Canada, Montreal, QC, Canada), Makan Pourzandi (Ericsson Security Research, Ericsson Canada, Montreal, QC, Canada), Mengyuan Zhang (Department of Computing, The Hong Kong Polytechnic University, China), Lingyu Wang (CIISE, Concordia University, Montreal, QC, Canada)

Read More

NSFuzz: Towards Efficient and State-Aware Network Service Fuzzing

Shisong Qin (Tsinghua University), Fan Hu (State Key Laboratory of Mathematical Engineering and Advanced Computing), Bodong Zhao (Tsinghua University), Tingting Yin (Tsinghua University), Chao Zhang (Tsinghua University)

Read More