Jianfeng Li (The Hong Kong Polytechnic University), Shuohan Wu (The Hong Kong Polytechnic University), Hao Zhou (The Hong Kong Polytechnic University), Xiapu Luo (The Hong Kong Polytechnic University), Ting Wang (Penn State), Yangyang Liu (The Hong Kong Polytechnic University), Xiaobo Ma (Xi'an Jiaotong University)

Mobile apps have profoundly reshaped modern lifestyles in different aspects. Several concerns are naturally raised about the privacy risk of mobile apps. Despite the prevalence of encrypted communication, app fingerprinting (AF) attacks still pose a serious threat to users’ online privacy. However, existing AF attacks are usually hampered by four challenging issues, namely i) hidden destination, ii) invisible boundary, iii) app multiplexing, and iv) open-world recognition, when they are applied to wireless traffic. None of existing AF attacks can address all these challenges. In this paper, we advance a novel AF attack, dubbed PACKETPRINT, to recognize user activities associated with the app of interest from encrypted wireless traffic and tackle the above challenges by proposing two novel models, i.e., sequential XGBoost and hierarchical bag-of- words model. We conduct extensive experiments to evaluate the proposed attack in a series of challenging scenarios, including i) open-world setting, ii) packet loss and network congestion, iii) simultaneous use of different apps, and iv) cross-dataset recognition. The experimental results show that PACKETPRINT can accurately recognize user activities associated with the apps of interest. It achieves the average F1-score 0.884 for open-world app recognition and the average F1-score 0.959 for in-app user action recognition.

View More Papers

Fuzzing: A Tale of Two Cultures

Andreas Zeller (CISPA Helmholtz Center for Information Security)

Read More

Demo #2: Policy-based Discovery and Patching of Logic Bugs...

Hyungsub Kim (Purdue University), Muslum Ozgur Ozmen (Purdue University), Antonio Bianchi (Purdue University), Z. Berkay Celik (Purdue University) and Dongyan Xu (Purdue University)

Read More

Demo #8: Identifying Drones Based on Visual Tokens

Ben Nassi (Ben-Gurion University of the Negev), Elad Feldman (Ben-Gurion University of the Negev), Aviel Levy (Ben-Gurion University of the Negev), Yaron Pirutin (Ben-Gurion University of the Negev), Asaf Shabtai (Ben-Gurion University of the Negev), Ryusuke Masuoka (Fujitsu System Integration Laboratories) and Yuval Elovici (Ben-Gurion University of the Negev)

Read More

DITTANY: Strength-Based Dynamic Information Flow Analysis Tool for x86...

Walid J. Ghandour, Clémentine Maurice (CNRS, CRIStAL)

Read More