Ziqi Xu (University of Arizona), Jingcheng Li (University of Arizona), Yanjun Pan (University of Arizona), Loukas Lazos (University of Arizona, Tucson), Ming Li (University of Arizona, Tucson), Nirnimesh Ghose (University of Nebraska–Lincoln)

Cooperative vehicle platooning significantly improves highway safety and fuel efficiency. In this model, a set of vehicles move in line formation and coordinate functions such as acceleration, braking, and steering using a combination of physical sensing and vehicle-to-vehicle (V2V) messaging. The authenticity and integrity of the V2V messages are paramount to highway safety. For this reason, recent V2V and V2X standards support the integration of a PKI. However, a PKI cannot bind a vehicle's digital identity to the vehicle's physical state (location, heading, velocity, etc.). As a result, a vehicle with valid cryptographic credentials can impact the platoon by creating ``ghost'' vehicles and injecting false state information.

In this paper, we seek to provide the missing link between the physical and the digital world in the context of verifying a vehicle’s platoon membership. We focus on the property of following, where vehicles follow each other in a close and coordinated manner. We aim at developing a Proof-of-Following (PoF) protocol that enables a candidate vehicle to prove that it follows a verifier within the typical platooning distance. The main idea of the proposed {em PoF} protocol is to draw security from the common, but constantly changing environment experienced by the closely traveling vehicles. We use the large-scale fading effect of ambient RF signals as a common source of randomness to construct a {em PoF} primitive. The correlation of large-scale fading is an ideal candidate for the mobile outdoor environment because it exponentially decays with distance and time. We evaluate our PoF protocol on an experimental platoon of two vehicles in freeway, highway, and urban driving conditions. In such realistic conditions, we demonstrate that the PoF withstands both the pre-recording and following attacks with overwhelming probability.

View More Papers

Chunked-Cache: On-Demand and Scalable Cache Isolation for Security Architectures

Ghada Dessouky (Technical University of Darmstadt), Emmanuel Stapf (Technical University of Darmstadt), Pouya Mahmoody (Technical University of Darmstadt), Alexander Gruler (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

The Droid is in the Details: Environment-aware Evasion of...

Brian Kondracki (Stony Brook University), Babak Amin Azad (Stony Brook University), Najmeh Miramirkhani (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Read More

Let’s Authenticate: Automated Certificates for User Authentication

James Conners (Brigham Young University), Corey Devenport (Brigham Young University), Stephen Derbidge (Brigham Young University), Natalie Farnsworth (Brigham Young University), Kyler Gates (Brigham Young University), Stephen Lambert (Brigham Young University), Christopher McClain (Brigham Young University), Parker Nichols (Brigham Young University), Daniel Zappala (Brigham Young University)

Read More

FirmWire: Transparent Dynamic Analysis for Cellular Baseband Firmware

Grant Hernandez (University of Florida), Marius Muench (Vrije Universiteit Amsterdam), Dominik Maier (TU Berlin), Alyssa Milburn (Vrije Universiteit Amsterdam), Shinjo Park (TU Berlin), Tobias Scharnowski (Ruhr-University Bochum), Tyler Tucker (University of Florida), Patrick Traynor (University of Florida), Kevin Butler (University of Florida)

Read More