Jiang Zhang (University of Southern California), Konstantinos Psounis (University of Southern California), Muhammad Haroon (University of California, Davis), Zubair Shafiq (University of California, Davis)

Online behavioral advertising, and the associated tracking paraphernalia, poses a real privacy threat. Unfortunately, existing privacy-enhancing tools are not always effective against online advertising and tracking. We propose HARPO, a principled learning-based approach to subvert online behavioral advertising through obfuscation. HARPO uses reinforcement learning to adaptively interleave real page visits with fake pages to distort a tracker’s view of a user’s browsing profile. We evaluate HARPO against real-world user profiling and ad targeting models used for online behavioral advertising. The results show that HARPO improves privacy by triggering more than 40% incorrect interest segments and 6×higher bid values. HARPO outperforms existing obfuscation tools by as much as 16×for the same overhead. HARPO is also able to achieve better stealthiness to adversarial detection than existing obfuscation tools. HARPO meaningfully advances the state-of-the-art in leveraging obfuscation to subvert online behavioral advertising.

View More Papers

Hiding My Real Self! Protecting Intellectual Property in Additive...

Sizhuang Liang (Georgia Institute of Technology), Saman Zonouz (Rutgers University), Raheem Beyah (Georgia Institute of Technology)

Read More

PMTUD is not Panacea: Revisiting IP Fragmentation Attacks against...

Xuewei Feng (Tsinghua University), Qi Li (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Baojun Liu (Tsinghua University), Xiaofeng Zheng (Institute for Network Sciences and Cyberspace, Tsinghua University; QiAnXin Technology Research Institute & Legendsec Information Technology (Beijing) Inc.), Qiushi Yang (QiAnXin Technology Research Institute & Legendsec Information Technology (Beijing) Inc.), Haixin Duan…

Read More

Demo #13: Attacking LiDAR Semantic Segmentation in Autonomous Driving

Yi Zhu (State University of New York at Buffalo), Chenglin Miao (University of Georgia), Foad Hajiaghajani (State University of New York at Buffalo), Mengdi Huai (University of Virginia), Lu Su (Purdue University) and Chunming Qiao (State University of New York at Buffalo)

Read More

D-Box: DMA-enabled Compartmentalization for Embedded Applications

Alejandro Mera (Northeastern University), Yi Hui Chen (Northeastern University), Ruimin Sun (Northeastern University), Engin Kirda (Northeastern University), Long Lu (Northeastern University)

Read More