Jiang Zhang (University of Southern California), Konstantinos Psounis (University of Southern California), Muhammad Haroon (University of California, Davis), Zubair Shafiq (University of California, Davis)

Online behavioral advertising, and the associated tracking paraphernalia, poses a real privacy threat. Unfortunately, existing privacy-enhancing tools are not always effective against online advertising and tracking. We propose HARPO, a principled learning-based approach to subvert online behavioral advertising through obfuscation. HARPO uses reinforcement learning to adaptively interleave real page visits with fake pages to distort a tracker’s view of a user’s browsing profile. We evaluate HARPO against real-world user profiling and ad targeting models used for online behavioral advertising. The results show that HARPO improves privacy by triggering more than 40% incorrect interest segments and 6×higher bid values. HARPO outperforms existing obfuscation tools by as much as 16×for the same overhead. HARPO is also able to achieve better stealthiness to adversarial detection than existing obfuscation tools. HARPO meaningfully advances the state-of-the-art in leveraging obfuscation to subvert online behavioral advertising.

View More Papers

Fuzzing Configurations of Program Options

Zenong Zhang (University of Texas at Dallas), George Klees (University of Maryland), Eric Wang (Poolesville High School), Michael Hicks (University of Maryland), Shiyi Wei (University of Texas at Dallas)

Read More

Demo #6: Attacks on CAN Error Handling Mechanism

Khaled Serag (Purdue University), Vireshwar Kumar (IIT Delhi), Z. Berkay Celik (Purdue University), Rohit Bhatia (Purdue University), Mathias Payer (EPFL) and Dongyan Xu (Purdue University)

Read More

D-Box: DMA-enabled Compartmentalization for Embedded Applications

Alejandro Mera (Northeastern University), Yi Hui Chen (Northeastern University), Ruimin Sun (Northeastern University), Engin Kirda (Northeastern University), Long Lu (Northeastern University)

Read More