Wu Luo (Peking University), Xuhua Ding (Singapore Management University), Pengfei Wu (School of Computing, National University of Singapore), Xiaolei Zhang (Peking University), Qingni Shen (Peking University), Zhonghai Wu (Peking University)

We present ScriptChecker, a novel browser-based framework to effectively and efficiently restrict third-party script execution according to the host web page's needs. Different from all existing schemes functioning at the JavaScript layer, ScriptChecker holistically harnesses context separation and the browser's security monitors to enforce on-demand access controls upon tasks executing untrusted code. The host page can flexibly assign resource-access capabilities to tasks upon their creation. Reaping the benefits of the task capability approach, ScriptChecker outperforms existing techniques in security, usability and performance. We have implemented a prototype of ScriptChecker on Chrome and rigorously evaluated its security and performance with case studies and benchmarks. The experimental results show that its strong security strength and ease-of-use are attained at the cost of unnoticeable performance loss. It incurs about 0.2 microseconds overhead to mediate a DOM access, and 5% delay when loading popular JS graphics and utility libraries.

View More Papers

Interpretable Federated Transformer Log Learning for Cloud Threat Forensics

Gonzalo De La Torre Parra (University of the Incarnate Word, TX, USA), Luis Selvera (Secure AI and Autonomy Lab, The University of Texas at San Antonio, TX, USA), Joseph Khoury (The Cyber Center For Security and Analytics, University of Texas at San Antonio, TX, USA), Hector Irizarry (Raytheon, USA), Elias Bou-Harb (The Cyber Center For…

Read More

A Study on Security and Privacy Practices in Danish...

Asmita Dalela (IT University of Copenhagen), Saverio Giallorenzo (Department of Computer Science and Engineering - University of Bologna), Oksana Kulyk (ITU Copenhagen), Jacopo Mauro (University of Southern Denmark), Elda Paja (IT University of Copenhagen)

Read More

MIRROR: Model Inversion for Deep Learning Network with High...

Shengwei An (Purdue University), Guanhong Tao (Purdue University), Qiuling Xu (Purdue University), Yingqi Liu (Purdue University), Guangyu Shen (Purdue University), Yuan Yao (Nanjing University), Jingwei Xu (Nanjing University), Xiangyu Zhang (Purdue University)

Read More

Problematic Content in Online Ads

Franzisca Roesner (University of Washington)

Read More