Mohammad Naseri (University College London), Jamie Hayes (DeepMind), Emiliano De Cristofaro (University College London & Alan Turing Institute)

Federated Learning (FL) allows multiple participants to train machine learning models collaboratively by keeping their datasets local while only exchanging model updates. Alas, this is not necessarily free from privacy and robustness vulnerabilities, e.g., via membership, property, and backdoor attacks. This paper investigates whether and to what extent one can use differential Privacy (DP) to protect both privacy and robustness in FL. To this end, we present a first-of-its-kind evaluation of Local and Central Differential Privacy (LDP/CDP) techniques in FL, assessing their feasibility and effectiveness.

Our experiments show that both DP variants do defend against backdoor attacks, albeit with varying levels of protection-utility trade-offs, but anyway more effectively than other robustness defenses. DP also mitigates white-box membership inference attacks in FL, and our work is the first to show it empirically. Neither LDP nor CDP, however, defend against property inference. Overall, our work provides a comprehensive, re-usable measurement methodology to quantify the trade-offs between robustness/privacy and utility in differentially private FL.

View More Papers

EqualNet: A Secure and Practical Defense for Long-term Network...

Jinwoo Kim (KAIST), Eduard Marin (Telefonica Research (Spain)), Mauro Conti (University of Padua), Seungwon Shin (KAIST)

Read More

FirmWire: Transparent Dynamic Analysis for Cellular Baseband Firmware

Grant Hernandez (University of Florida), Marius Muench (Vrije Universiteit Amsterdam), Dominik Maier (TU Berlin), Alyssa Milburn (Vrije Universiteit Amsterdam), Shinjo Park (TU Berlin), Tobias Scharnowski (Ruhr-University Bochum), Tyler Tucker (University of Florida), Patrick Traynor (University of Florida), Kevin Butler (University of Florida)

Read More

Clarion: Anonymous Communication from Multiparty Shuffling Protocols

Saba Eskandarian (University of North Carolina at Chapel Hill), Dan Boneh (Stanford University)

Read More

HARPO: Learning to Subvert Online Behavioral Advertising

Jiang Zhang (University of Southern California), Konstantinos Psounis (University of Southern California), Muhammad Haroon (University of California, Davis), Zubair Shafiq (University of California, Davis)

Read More