Grant Hernandez (University of Florida), Marius Muench (Vrije Universiteit Amsterdam), Dominik Maier (TU Berlin), Alyssa Milburn (Vrije Universiteit Amsterdam), Shinjo Park (TU Berlin), Tobias Scharnowski (Ruhr-University Bochum), Tyler Tucker (University of Florida), Patrick Traynor (University of Florida), Kevin Butler (University of Florida)

Smartphones today leverage baseband processors to implement the multitude of cellular protocols. Basebands execute firmware, which is responsible for decoding hundreds of message types developed from three decades of cellular standards. Despite its large over-the-air attack surface, baseband firmware has received little security analysis. Previous work mostly analyzed
only a handful of firmware images from a few device models, but often relied heavily on time-consuming manual static analysis or single-function fuzzing.

To fill this gap, we present FirmWire, the first full-system emulation platform for baseband processors that executes unmodified baseband binary firmware. FirmWire provides baseband-specific APIs to easily add support for new vendors, firmware images, and security analyses. To demonstrate FirmWire’s scalability, we support 213 firmware images across 2 vendors and 9 phone models, allowing them to be executed and tested. With these images, FirmWire automatically discovers and bridges internal baseband APIs, allowing protocol messages to be injected with ease. Using these entry points, we selected the LTE and GSM protocols for fuzzing and discovered 7 pre-authentication memory corruptions that could lead to remote code execution--4 of which were previously unknown. We reproduced these crashes over-the-air on real devices, proving FirmWire’s emulation accuracy. FirmWire is a scalable platform for baseband security testing and we release it as open-source to the community for future research.

View More Papers

Transparency Dictionaries with Succinct Proofs of Correct Operation

Ioanna Tzialla (New York University), Abhiram Kothapalli (Carnegie Mellon University), Bryan Parno (Carnegie Mellon University), Srinath Setty (Microsoft Research)

Read More

SynthCT: Towards Portable Constant-Time Code

Sushant Dinesh (University of Illinois at Urbana Champaign), Grant Garrett-Grossman (University of Illinois at Urbana Champaign), Christopher W. Fletcher (University of Illinois at Urbana Champaign)

Read More

SemperFi: Anti-spoofing GPS Receiver for UAVs

Harshad Sathaye (Northeastern University), Gerald LaMountain (Northeastern University), Pau Closas (Northeastern University), Aanjhan Ranganathan (Northeastern University)

Read More

Let’s Authenticate: Automated Certificates for User Authentication

James Conners (Brigham Young University), Corey Devenport (Brigham Young University), Stephen Derbidge (Brigham Young University), Natalie Farnsworth (Brigham Young University), Kyler Gates (Brigham Young University), Stephen Lambert (Brigham Young University), Christopher McClain (Brigham Young University), Parker Nichols (Brigham Young University), Daniel Zappala (Brigham Young University)

Read More