Gen Zhang (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Tai Yue (National University of Defense Technology), Xiangdong Kong (National University of Defense Technology), Shan Huang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Coverage-guided gray-box fuzzing (CGF) is an efficient software testing technique. There are usually multiple objectives to optimize in CGF. However, existing CGF methods cannot successfully find the optimal values for multiple objectives simultaneously. In this paper, we propose a gray-box fuzzer for multi-objective optimization (MOO) called MobFuzz. We model the multi-objective optimization process as a multi-player multi-armed bandit (MPMAB). First, it adaptively selects the objective combination that contains the most appropriate objectives for the current situation. Second, our model deals with the power schedule, which adaptively allocates energy to the seeds under the chosen objective combination. In MobFuzz, we propose an evolutionary algorithm called NIC to optimize our chosen objectives simultaneously without incurring additional performance overhead. To prove the effectiveness of MobFuzz, we conduct experiments on 12 real-world programs and the MAGMA data set. Experiment results show that multi-objective optimization in MobFuzz outperforms single-objective fuzzing in the baseline fuzzers. In contrast to them, MobFuzz can select the optimal objective combination and increase the values of multiple objectives up to 107%, with at most a 55% reduction in the energy consumption. Moreover, MobFuzz has up to 6% more program coverage and finds 3x more unique bugs than the baseline fuzzers. The NIC algorithm has at least a 2x improvement with a performance overhead of approximately 3%.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 55 ) ) ) [post__not_in] => Array ( [0] => 8488 ) )

Context-Sensitive and Directional Concurrency Fuzzing for Data-Race Detection

Zu-Ming Jiang (Tsinghua University), Jia-Ju Bai (Tsinghua University), Kangjie Lu (University of Minnesota), Shi-Min Hu (Tsinghua University)

Read More

Transparency Dictionaries with Succinct Proofs of Correct Operation

Ioanna Tzialla (New York University), Abhiram Kothapalli (Carnegie Mellon University), Bryan Parno (Carnegie Mellon University), Srinath Setty (Microsoft Research)

Read More

Drivers and Passengers Maybe the Weakest Link in the...

Aiping Xiong (Pennsylvania State University), Zekun Cai (Pennsylvania State University) and Tianhao Wang (University of Virginia)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)