Fabio Streun (ETH Zurich), Joel Wanner (ETH Zurich), Adrian Perrig (ETH Zurich)

Many systems today rely heavily on virtual private network (VPN) technology to connect networks and protect services on the Internet. While prior studies compare the performance of different implementations, they do not consider adversarial settings. To address this gap, we evaluate the resilience of VPN implementations to flooding-based denial-of-service (DoS) attacks.

We focus on a class of emph{stateless flooding} attacks, which are particularly threatening because an attacker that operates stealthily by spoofing its IP addresses can perform them.
We have implemented various attacks to evaluate the DoS resilience of four widely used VPN solutions and measured their impact on a high-performance server with a $40,mathrm{Gb/s}$ interface, which has revealed surprising results:
An adversary can deny data transfer over an already established WireGuard connection with just $300,mathrm{Mb/s}$ of attack traffic.
When using strongSwan (IPsec), $75,mathrm{Mb/s}$ of attack traffic is sufficient to block connection establishment.
A $100,mathrm{Mb/s}$ flood overwhelms OpenVPN, denying data transfer through VPN connections and connection establishments.
Cisco's AnyConnect VPN solution can be overwhelmed with even less attack traffic:
When using IPsec, $50,mathrm{Mb/s}$ of attack traffic deny connection establishment. When using SSL, $50,mathrm{Mb/s}$ suffice to deny data transfer over already established connections.
Furthermore, performance analysis of WireGuard revealed significant inefficiencies in the implementation related to multi-core synchronization. We also found vulnerabilities in the implementations of strongSwan and OpenVPN, which an attacker can easily exploit for highly effective DoS attacks.
These findings demonstrate the need for adversarial testing of VPN implementations with respect to DoS resilience.

View More Papers

Fighting Fake News in Encrypted Messaging with the Fuzzy...

Linsheng Liu (George Washington University), Daniel S. Roche (United States Naval Academy), Austin Theriault (George Washington University), Arkady Yerukhimovich (George Washington University)

Read More

FitM: Binary-Only Coverage-GuidedFuzzing for Stateful Network Protocols

Dominik Maier, Otto Bittner, Marc Munier, Julian Beier (TU Berlin)

Read More

30 Years into Scientific Binary Decompilation: What We Have...

Dr. Ruoyu (Fish) Wang, Assistant Professor at Arizona State University

Read More

Repttack: Exploiting Cloud Schedulers to Guide Co-Location Attacks

Chongzhou Fang (University of California, Davis), Han Wang (University of California, Davis), Najmeh Nazari (University of California, Davis), Behnam Omidi (George Mason University), Avesta Sasan (University of California, Davis), Khaled N. Khasawneh (George Mason University), Setareh Rafatirad (University of California, Davis), Houman Homayoun (University of California, Davis)

Read More