Fabio Streun (ETH Zurich), Joel Wanner (ETH Zurich), Adrian Perrig (ETH Zurich)

Many systems today rely heavily on virtual private network (VPN) technology to connect networks and protect services on the Internet. While prior studies compare the performance of different implementations, they do not consider adversarial settings. To address this gap, we evaluate the resilience of VPN implementations to flooding-based denial-of-service (DoS) attacks.

We focus on a class of emph{stateless flooding} attacks, which are particularly threatening because an attacker that operates stealthily by spoofing its IP addresses can perform them.
We have implemented various attacks to evaluate the DoS resilience of four widely used VPN solutions and measured their impact on a high-performance server with a $40,mathrm{Gb/s}$ interface, which has revealed surprising results:
An adversary can deny data transfer over an already established WireGuard connection with just $300,mathrm{Mb/s}$ of attack traffic.
When using strongSwan (IPsec), $75,mathrm{Mb/s}$ of attack traffic is sufficient to block connection establishment.
A $100,mathrm{Mb/s}$ flood overwhelms OpenVPN, denying data transfer through VPN connections and connection establishments.
Cisco's AnyConnect VPN solution can be overwhelmed with even less attack traffic:
When using IPsec, $50,mathrm{Mb/s}$ of attack traffic deny connection establishment. When using SSL, $50,mathrm{Mb/s}$ suffice to deny data transfer over already established connections.
Furthermore, performance analysis of WireGuard revealed significant inefficiencies in the implementation related to multi-core synchronization. We also found vulnerabilities in the implementations of strongSwan and OpenVPN, which an attacker can easily exploit for highly effective DoS attacks.
These findings demonstrate the need for adversarial testing of VPN implementations with respect to DoS resilience.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 55 ) ) ) [post__not_in] => Array ( [0] => 8478 ) )

Titanium: A Metadata-Hiding File-Sharing System with Malicious Security

Weikeng Chen (DZK/UC Berkeley), Thang Hoang (Virginia Tech), Jorge Guajardo (Robert Bosch Research and Technology Center), Attila A. Yavuz (University of South Florida)

Read More

Fooling the Eyes of Autonomous Vehicles: Robust Physical Adversarial...

Wei Jia (School of Cyber Science and Engineering, Huazhong University of Science and Technology), Zhaojun Lu (School of Cyber Science and Engineering, Huazhong University of Science and Technology), Haichun Zhang (Huazhong University of Science and Technology), Zhenglin Liu (Huazhong University of Science and Technology), Jie Wang (Shenzhen Kaiyuan Internet Security Co., Ltd), Gang Qu (University…

Read More

GPSKey: GPS based Secret Key Establishment for Intra-Vehicle Environment

Edwin Yang (University of Oklahoma) and Song Fang (University of Oklahoma)

Read More

Demo #6: Attacks on CAN Error Handling Mechanism

Khaled Serag (Purdue University), Vireshwar Kumar (IIT Delhi), Z. Berkay Celik (Purdue University), Rohit Bhatia (Purdue University), Mathias Payer (EPFL) and Dongyan Xu (Purdue University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)