Fabio Streun (ETH Zurich), Joel Wanner (ETH Zurich), Adrian Perrig (ETH Zurich)

Many systems today rely heavily on virtual private network (VPN) technology to connect networks and protect services on the Internet. While prior studies compare the performance of different implementations, they do not consider adversarial settings. To address this gap, we evaluate the resilience of VPN implementations to flooding-based denial-of-service (DoS) attacks.

We focus on a class of emph{stateless flooding} attacks, which are particularly threatening because an attacker that operates stealthily by spoofing its IP addresses can perform them.
We have implemented various attacks to evaluate the DoS resilience of four widely used VPN solutions and measured their impact on a high-performance server with a $40,mathrm{Gb/s}$ interface, which has revealed surprising results:
An adversary can deny data transfer over an already established WireGuard connection with just $300,mathrm{Mb/s}$ of attack traffic.
When using strongSwan (IPsec), $75,mathrm{Mb/s}$ of attack traffic is sufficient to block connection establishment.
A $100,mathrm{Mb/s}$ flood overwhelms OpenVPN, denying data transfer through VPN connections and connection establishments.
Cisco's AnyConnect VPN solution can be overwhelmed with even less attack traffic:
When using IPsec, $50,mathrm{Mb/s}$ of attack traffic deny connection establishment. When using SSL, $50,mathrm{Mb/s}$ suffice to deny data transfer over already established connections.
Furthermore, performance analysis of WireGuard revealed significant inefficiencies in the implementation related to multi-core synchronization. We also found vulnerabilities in the implementations of strongSwan and OpenVPN, which an attacker can easily exploit for highly effective DoS attacks.
These findings demonstrate the need for adversarial testing of VPN implementations with respect to DoS resilience.

View More Papers

Demo #13: Attacking LiDAR Semantic Segmentation in Autonomous Driving

Yi Zhu (State University of New York at Buffalo), Chenglin Miao (University of Georgia), Foad Hajiaghajani (State University of New York at Buffalo), Mengdi Huai (University of Virginia), Lu Su (Purdue University) and Chunming Qiao (State University of New York at Buffalo)

Read More

DrawnApart: A Deep-Learning Enhanced GPU Fingerprinting Technique

Naif Mehanna (University of Lille, CNRS, Inria), Tomer Laor (Ben-Gurion University of the Negev)

Read More

Demo #6: Attacks on CAN Error Handling Mechanism

Khaled Serag (Purdue University), Vireshwar Kumar (IIT Delhi), Z. Berkay Celik (Purdue University), Rohit Bhatia (Purdue University), Mathias Payer (EPFL) and Dongyan Xu (Purdue University)

Read More

EMS: History-Driven Mutation for Coverage-based Fuzzing

Chenyang Lyu (Zhejiang University), Shouling Ji (Zhejiang University), Xuhong Zhang (Zhejiang University & Zhejiang University NGICS Platform), Hong Liang (Zhejiang University), Binbin Zhao (Georgia Institute of Technology), Kangjie Lu (University of Minnesota), Raheem Beyah (Georgia Institute of Technology)

Read More