Fabio Streun (ETH Zurich), Joel Wanner (ETH Zurich), Adrian Perrig (ETH Zurich)

Many systems today rely heavily on virtual private network (VPN) technology to connect networks and protect services on the Internet. While prior studies compare the performance of different implementations, they do not consider adversarial settings. To address this gap, we evaluate the resilience of VPN implementations to flooding-based denial-of-service (DoS) attacks.

We focus on a class of emph{stateless flooding} attacks, which are particularly threatening because an attacker that operates stealthily by spoofing its IP addresses can perform them.
We have implemented various attacks to evaluate the DoS resilience of four widely used VPN solutions and measured their impact on a high-performance server with a $40,mathrm{Gb/s}$ interface, which has revealed surprising results:
An adversary can deny data transfer over an already established WireGuard connection with just $300,mathrm{Mb/s}$ of attack traffic.
When using strongSwan (IPsec), $75,mathrm{Mb/s}$ of attack traffic is sufficient to block connection establishment.
A $100,mathrm{Mb/s}$ flood overwhelms OpenVPN, denying data transfer through VPN connections and connection establishments.
Cisco's AnyConnect VPN solution can be overwhelmed with even less attack traffic:
When using IPsec, $50,mathrm{Mb/s}$ of attack traffic deny connection establishment. When using SSL, $50,mathrm{Mb/s}$ suffice to deny data transfer over already established connections.
Furthermore, performance analysis of WireGuard revealed significant inefficiencies in the implementation related to multi-core synchronization. We also found vulnerabilities in the implementations of strongSwan and OpenVPN, which an attacker can easily exploit for highly effective DoS attacks.
These findings demonstrate the need for adversarial testing of VPN implementations with respect to DoS resilience.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 55 ) ) ) [post__not_in] => Array ( [0] => 8478 ) )

The Droid is in the Details: Environment-aware Evasion of...

Brian Kondracki (Stony Brook University), Babak Amin Azad (Stony Brook University), Najmeh Miramirkhani (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Read More

Demo #13: Attacking LiDAR Semantic Segmentation in Autonomous Driving

Yi Zhu (State University of New York at Buffalo), Chenglin Miao (University of Georgia), Foad Hajiaghajani (State University of New York at Buffalo), Mengdi Huai (University of Virginia), Lu Su (Purdue University) and Chunming Qiao (State University of New York at Buffalo)

Read More

SemperFi: Anti-spoofing GPS Receiver for UAVs

Harshad Sathaye (Northeastern University), Gerald LaMountain (Northeastern University), Pau Closas (Northeastern University), Aanjhan Ranganathan (Northeastern University)

Read More

An In-Depth Analysis on Adoption of Attack Mitigations in...

Ruotong Yu (Stevens Institute of Technology, University of Utah), Yuchen Zhang, Shan Huang (Stevens Institute of Technology)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)