Hsun Lee (National Taiwan University), Yuming Hsu (National Taiwan University), Jing-Jie Wang (National Taiwan University), Hao Cheng Yang (National Taiwan University), Yu-Heng Chen (National Taiwan University), Yih-Chun Hu (University of Illinois at Urbana-Champaign), Hsu-Chun Hsiao (National Taiwan University)

Generating randomness by public participation allows participants to contribute randomness directly and verify the result's security. Ideally, the difficulty of participating in such activities should be as low as possible to reduce the computational burden of being a contributor. However, existing randomness generation protocols are unsuitable for this scenario because of scalability or usability issues. Hence, in this paper we present HeadStart, a participatory randomness protocol designed for public participation at scale. HeadStart allows contributors to verify the result on commodity devices efficiently, and provides a parameter $L$ that can make the result-publication latency $L$ times lower. Additionally, we propose two implementation improvements to speed up the verification further and reduce the proof size. The verification complexity of HeadStart is only $O(L times polylog(T) +log C)$ for a contribution phase lasting for time $T$ with $C$ contributions.

View More Papers

Characterizing the Adoption of Security.txt Files and their Applications...

William Findlay (Carleton University) and AbdelRahman Abdou (Carleton University)

Read More

Demo: A Simulator for Cooperative and Automated Driving Security

Mohammed Lamine Bouchouia (Telecom Paris - Institut Polytechnique de Paris), Jean-Philippe Monteuuis (Qualcomm), Houda Labiod (Telecom Paris - Institut Polytechnique de Paris), Ons Jelassi, Wafa Ben Jaballah (Thales) and Jonathan Petit (Telecom Paris - Institut Polytechnique de Paris)

Read More

Local and Central Differential Privacy for Robustness and Privacy...

Mohammad Naseri (University College London), Jamie Hayes (DeepMind), Emiliano De Cristofaro (University College London & Alan Turing Institute)

Read More

Fine-Grained Coverage-Based Fuzzing

Bernard Nongpoh (Université Paris Saclay), Marwan Nour (Université Paris Saclay), Michaël Marcozzi (Université Paris Saclay), Sébastien Bardin (Université Paris Saclay)

Read More