Shujaat Mirza, Christina Pöpper (New York University)

Online social networks accumulate unprecedented amounts of data that continue to exist on user profiles long after the time of posting. Given that these platforms primarily provide a venue for people to connect and foster online friendships, the influence and the risks associated with longitudinal data may impact users and their reasons for using these platforms. To better understand these issues, we conducted two user studies of Facebook users analyzing the history of past postings w. r. t. to their perceived relevance, longitudinal exposure, and impact on the users’ befriending behavior. The studies give us a cross-cultural undergraduate student sample (n=89, campus study) and a Mechanical Turk sample of two cultural backgrounds from the US and India (n=209, MTurk study). Our findings reveal that a sizable group of participants consider their past postings irrelevant and, at times, embarrassing. However, participants’ awareness and usage of longitudinal privacy control features (e. g., Limit Past Posts) are limited, resulting in overexposure of their past postings and personal information. Importantly, we find support that these overexposed, yet irrelevant, past postings (of both participants and friend requesters) have the potential to influence users’ fundamental behavior on the platform: friend network expansion. Participants greatly valued friend requester’s past postings, particularly in the absence of prior personal interactions, but are influenced by their backgrounds (American users rely significantly more than their Indian counterparts on the requesters’ past postings for their befriending behavior). We close by discussing the implications of our findings on the future of longitudinal privacy controls.

View More Papers

Does This App Respect My Privacy? Design and Evaluation...

Oksana Kulyk (Karlsruhe Institute of Technology); Paul Gerber, Karola Marky, Christopher Beckmann (Technische Universität Darmstadt); Melanie Volkamer (Karlsruhe Institute of Technology)

Read More

Evaluating Personal Data Control In Mobile Applications Using Heuristics

Alain Giboin (UCA, INRIA, CNRS, I3S), Karima Boudaoud (UCA, CNRS, I3S), Patrice Pena (Userthink), Yoann Bertrand (UCA, CNRS, I3S), Fabien Gandon (UCA, INRIA, CNRS, I3S)

Read More

Practical Blind Membership Inference Attack via Differential Comparisons

Bo Hui (The Johns Hopkins University), Yuchen Yang (The Johns Hopkins University), Haolin Yuan (The Johns Hopkins University), Philippe Burlina (The Johns Hopkins University Applied Physics Laboratory), Neil Zhenqiang Gong (Duke University), Yinzhi Cao (The Johns Hopkins University)

Read More

Processing Dangerous Paths – On Security and Privacy of...

Jens Müller (Ruhr University Bochum), Dominik Noss (Ruhr University Bochum), Christian Mainka (Ruhr University Bochum), Vladislav Mladenov (Ruhr University Bochum), Jörg Schwenk (Ruhr University Bochum)

Read More